DOI QR코드

DOI QR Code

합성곱 신경망을 이용한 컨포멀 코팅 PCB에 발생한 문제성 기포 검출 알고리즘

A Problematic Bubble Detection Algorithm for Conformal Coated PCB Using Convolutional Neural Networks

  • 투고 : 2021.03.30
  • 심사 : 2021.07.06
  • 발행 : 2021.07.30

초록

컨포멀 코팅은 PCB(Printed Circuit Board)를 보호하는 기술로 PCB의 고장을 최소화한다. 코팅의 결함은 PCB의 고장과 연결되기 때문에 성공적인 컨포멀 코팅 조건을 만족하기 위해서 코팅면에 기포가 발생했는지 검사한다. 본 논문에서는 영상 신호 처리를 적용하여 고위험군의 문제성 기포를 검출하는 알고리즘을 제안한다. 알고리즘은 문제성 기포의 후보를 구하는 단계와 후보를 검증하는 단계로 구성된다. 기포는 가시광 영상에서 나타나지 않지만, UV(Ultra Violet) 광원에서는 육안으로 구별이 가능하다. 특히, 문제성 기포의 중심은 밝기가 어둡고 테두리는 높은 밝기를 가진다. 이러한 밝기 특성을 논문에서는 협곡과 산맥 특징이라 부르고 두 가지 특징이 동시에 나타나는 영역을 문제성 기포의 후보라 하였다. 그러나 후보 중에는 기포가 아닌 후보가 존재할 수 있기 때문에 후보를 검증하는 단계가 필요하다. 후보 검증 단계에서는 합성곱 신경망 모델을 이용하였고, ResNet이 다른 모델과 비교하였을 때 성능이 가장 우수하였다. 본 논문에서 제시한 알고리즘은 정확률(Precision) 0.805, 재현율(Recall) 0.763, F1-점수(F1-score) 0.767의 성능을 보였고, 이러한 결과는 기포 검사 자동화에 대한 충분한 가능성을 보여준다.

Conformal coating is a technology that protects PCB(Printed Circuit Board) and minimizes PCB failures. Since the defects in the coating are linked to failure of the PCB, the coating surface is examined for air bubbles to satisfy the successful conditions of the conformal coating. In this paper, we propose an algorithm for detecting problematic bubbles in high-risk groups by applying image signal processing. The algorithm consists of finding candidates for problematic bubbles and verifying candidates. Bubbles do not appear in visible light images, but can be visually distinguished from UV(Ultra Violet) light sources. In particular the center of the problematic bubble is dark in brightness and the border is high in brightness. In the paper, these brightness characteristics are called valley and mountain features, and the areas where both characteristics appear at the same time are candidates for problematic bubbles. However, it is necessary to verify candidates because there may be candidates who are not bubbles. In the candidate verification phase, we used convolutional neural network models, and ResNet performed best compared to other models. The algorithms presented in this paper showed the performance of precision 0.805, recall 0.763, and f1-score 0.767, and these results show sufficient potential for bubble test automation.

키워드

과제정보

This work was supported by IMPEC Enterprise Co., Ltd. This work was supported by Institute of Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea Government(MSIT) 2020-0-01058.

참고문헌

  1. What is Conformal Coating?, http://www.electrolube.com, Retrieved 11 June 2015.
  2. D. Lee, "A Bubble Detection Algorithm for Flat Area in Conformal Coated PCB", The Institute of Electronics and Information Engineers Conference, pp. 971-973, 2020.
  3. I. Son, "Effective Brightness-Based Image Selection Algorithm for Detecting Bubbles in Conformal Coated PCB", The Institute of Electronics and Information Engineers Conference, pp. 977-970, 2020.
  4. J. Youn, "PCB Bubble Detection program Using OpenCV", The Institute of Electronics and Information Engineers Conference, pp. 322-323, 2019.
  5. J. Kim, "Classification of Bubbles in the PCB Coating Using the ResNet", The Institute of Electronics and Information Engineers Conference, pp. 328-330, 2019.
  6. H. Kim, "Automatic Defect Classification Using Frequency and Spatial Features in a Boosting Scheme", IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 5, MAY 2009
  7. Liao, P-S., Chen, T-S. and Chung, P-C., "A fast algorithm for multi-level thresholding", Journal of Information Science and Engineering 17 (5): 713-727, 2001.
  8. Nobuyuki Otsu. "A threshold selection method from gray-level histograms". IEEE Trans. Sys. Man. Cyber. 9 (1): 62-66. 1979 https://doi.org/10.1109/TSMC.1979.4310076
  9. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, Dec, 2015.
  10. K. He, X. Zhang, S. Ren, and J. Sun, "Identity Mappings in Deep Residual Networks" Computer Vision and Pattern Recognition, Vol. 3, pp. 1-15, Jul. 2016.
  11. Karen Simonyan, Andrew Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", arXiv Preprint arXiv 1409.1556, 2015.
  12. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le, "Learning Transferable Architectures for Scalable Image Recognition". CVPR, arXiv:1707.07012v4, 2018