DOI QR코드

DOI QR Code

Comparison of Bacterial Community of Healthy and Erwinia amylovora Infected Apples

  • Kim, Su-Hyeon (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University) ;
  • Cho, Gyoengjun (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University) ;
  • Lee, Su In (Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kim, Da-Ran (Division of Applied Life Science (BK21Plus) and Research Institute of Life Science, Gyeongsang National University) ;
  • Kwak, Youn-Sig (Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2021.04.22
  • Accepted : 2021.05.17
  • Published : 2021.08.01

Abstract

Fire blight disease, caused by Erwinia amylovora, could damage rosaceous plants such as apples, pears, and raspberries. In this study, we designed to understand how E. amylovora affected other bacterial communities on apple rhizosphere; twig and fruit endosphere; and leaf, and fruit episphere. Limited studies on the understanding of the microbial community of apples and changes the community structure by occurrence of the fire blight disease were conducted. As result of these experiments, the infected trees had low species richness and operational taxonomic unit diversity when compared to healthy trees. Rhizospheric bacterial communities were stable regardless of infection. But the communities in endosphere and episphere were significanlty affected by E. amylovora infection. We also found that several metabolic pathways differ significantly between infected and healthy trees. In particular, we observed differences in sugar metabolites. The finding provides that sucrose metabolites are important for colonization of E. amylovora in host tissue. Our results provide fundamental information on the microbial community structures between E. amylovora infected and uninfected trees, which will contribute to developing novel control strategies for the fire blight disease.

Keywords

Acknowledgement

This research was supported by the "Cooperative Research Program for Agriculture Science & Technology Development (PJ014934) from Rural Development Administration of Korea.

References

  1. Acimovic, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W. and Wise, J. C. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesisrelated protein genes. Front. Plant Sci. 6:16. https://doi.org/10.3389/fpls.2015.00016
  2. Ait Bahadou, S., Ouijja, A., Karfach, A., Tahiri, A. and Lahlali, R. 2018. New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microb. Pathog. 117:7-15. https://doi.org/10.1016/j.micpath.2018.02.011
  3. Bengtsson-Palme, J., Kristiansson, E. and Larsson, D. G. J. 2018. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42:fux053.
  4. Bogs, J. and Geider, K. 2000. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J. Bacteriol. 182:5351-5358. https://doi.org/10.1128/JB.182.19.5351-5358.2000
  5. Born, Y., Fieseler, L., Thony, V., Leimer, N., Duffy, B. and Loessner, M. J. 2017. Engineering of bacteriophages Y2::dpoL1-C and Y2::luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 83:e00341-e00317.
  6. Broggini, G. A. L., Duffy, B., Holliger, E., Scharer, H.-J., Gessler, C. and Patocchi, A. 2005. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard. Eur. J. Plant Pathol. 111:93-100. https://doi.org/10.1007/s10658-004-1423-x
  7. Buban, T. and Orosz-Kovacs, Z. 2003. The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst. Evol. 238:183-194. https://doi.org/10.1007/s00606-002-0266-1
  8. Cabrefiga, J., Bonaterra, A. and Montesinos, E. 2007. Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora, the causal agent of fire blight. Int. Microbiol. 10:123-132.
  9. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A. and Holmes, S. P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13:581-583. https://doi.org/10.1038/nmeth.3869
  10. Cui, Z., Huntley, R. B., Zeng, Q. and Steven, B. 2021. Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. ISME J. 15:318-329. https://doi.org/10.1038/s41396-020-00784-y
  11. Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y.-S. 2019a. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802. https://doi.org/10.1038/s41467-019-12785-3
  12. Kim, M.-J., Chae, D.-H., Cho, G., Kim, D.-R. and Kwak, Y.-S. 2019b. Characterization of antibacterial strains against kiwifruit bacterial canker pathogen. Plant Pathol. J. 35:473-485. https://doi.org/10.5423/PPJ.OA.05.2019.0154
  13. Koczan, J. M., McGrath, M. J., Zhao, Y. and Sundin, G. W. 2009. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237-1244. https://doi.org/10.1094/PHYTO-99-11-1237
  14. Kruskal, W. H. and Wallis, W. A. 1952. Use of ranks in onecriterion variance analysis. J. Am. Stat. Assoc. 47:583-621. https://doi.org/10.1080/01621459.1952.10483441
  15. Kube, M., Migdoll, A. M., Gehring, I., Heitmann, K., Mayer, Y., Kuhl, H., Knaust, F., Geider, K. and Reinhardt, R. 2010. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11:393. https://doi.org/10.1186/1471-2164-11-393
  16. Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. and Dangl, J. L. 2013. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10:999-1002. https://doi.org/10.1038/nmeth.2634
  17. McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  18. Miller, T. D. and Schroth, M. N. 1972. Monitoring the epiphytic population of Erwinia amylovora on pear with a selective medium. Phytopathology 62:1175-1182. https://doi.org/10.1094/Phyto-62-1175
  19. Murali, A., Bhargava, A. and Wright, E. S. 2018. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6:140. https://doi.org/10.1186/s40168-018-0521-5
  20. Pusey, P. L., Stockwell, V. O., Reardon, C. L., Smits, T. H. M. and Duffy, B. 2011. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology 101:1234-1241. https://doi.org/10.1094/PHYTO-09-10-0253
  21. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glockner, F. O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590-D596. https://doi.org/10.1093/nar/gks1219
  22. Ritchie, H. and Roser, M. 2020. Agriculture production. Published online at OurWorldindata.org. URL https://ourworldindata.org/agricultural-production [19 July 2021].
  23. Rosello, G., Bonaterra, A., Frances, J., Montesinos, L., Badosa, E. and Montesinos, E. 2013. Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. Eur. J. Plant Pathol. 137:621-633. https://doi.org/10.1007/s10658-013-0275-7
  24. Sholberg, P., Bedford, K. E., Haag, P. and Randall, P. 2001. Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple. Can. J. Plant Pathol. 23:60-67. https://doi.org/10.1080/07060660109506910
  25. van der Zwet, T., Orolaza-Halbrendt, N. and Zeller, W. 2012. Fire blight: history, biology, and management. American Phytopathological Society, St. Paul, MN, USA. 421 pp.
  26. Vincent, P. J., Brunner, J. F., Grove, G. G., Petit, B., Tangren, G. V. and Jones, W. E. 2010. A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Manag. Sci. 66:587-595. https://doi.org/10.1002/ps.1913
  27. Wassermann, B., Muller, H. and Berg, G. 2019. An apple a day: which bacteria do we eat with organic and conventional apples? Front. Microbiol. 10:1629. https://doi.org/10.3389/fmicb.2019.01629
  28. Williamson, S. J. and Yooseph, S. 2012. From bacterial to microbial ecosystems (metagenomics). Methods Mol. Biol. 804:35-55. https://doi.org/10.1007/978-1-61779-361-5_3
  29. Yao, H., Sun, X., He, C., Maitra, P., Li, X.-C. and Guo, L.-D. 2019. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7:57. https://doi.org/10.1186/s40168-019-0671-0
  30. Zhao, Y.-Q., Tian, Y.-L., Wang, L.-M., Geng, G.-M., Zhao, W.-J., Hu, B.-S. and Zhao, Y.-F. 2019. Fire blight disease, a fastapproaching threat to apple and pear production in China. J. Integr. Agric. 18:815-820. https://doi.org/10.1016/S2095-3119(18)62033-7
  31. Zheng, P.-F., Yang, Y.-Y., Zhang, S., You, C.-X., Zhang, Z.-L. and Hao, Y.-J. 2020. Identification and functional characterization of MdPIF3 in response to cold and drought stress in Malus domestica. Plant Cell Tissue Organ Cult. 144:435-447.