DOI QR코드

DOI QR Code

Resistance of Oryza sativa and Oryza glaberrima Genotypes to RBe24 Isolate of Rice Yellow Mottle Virus in Benin and Effects of Silicon on Host Response

  • Anato, Vital Kouessi Sixte (Pan African University Institute of Life and Earth Sciences (PAULESI), University of Ibadan) ;
  • Agnoun, Yves (Universite Nationale d'Agriculture (UNA)) ;
  • Houndjo, Joel (Pan African University Institute of Life and Earth Sciences (PAULESI), University of Ibadan) ;
  • Oludare, Aderonke (AfricaRice) ;
  • Agbangla, Clement (University of Abomey Calavi (UAC)) ;
  • Akoroda, Malachy (Pan African University Institute of Life and Earth Sciences (PAULESI), University of Ibadan) ;
  • Adetimirin, Victor O. (Pan African University Institute of Life and Earth Sciences (PAULESI), University of Ibadan)
  • Received : 2020.11.06
  • Accepted : 2021.07.15
  • Published : 2021.08.01

Abstract

Rice yellow mottle virus (RYMV) is the most harmful virus that affects irrigated and lowland rice in Africa. The RBe24 isolate of the virus is the most pathogenic strain in Benin. A total of 79 genotypes including susceptible IR64 (Oryza sativa) and the resistant TOG5681 (O. glaberrima) as checks were screened for their reactions to RBe24 isolate of RYMV and the effects of silicon on the response of host plants to the virus investigated. The experiment was a three-factor factorial consisting of genotypes, inoculation level (inoculated vs. non-inoculated), and silicon dose (0, 5, and 10 g/plant) applied as CaSiO3 with two replications and carried out twice in the screen house. Significant differences were observed among the rice genotypes. Fifteen highly resistant and eight resistant genotypes were identified, and these were mainly O. glaberrima. Silicon application did not affect disease incidence and severity at 21 and 42 days after inoculation (DAI); it, however, significantly increased plant height of inoculated (3.6% for 5 g CaSiO3/plant and 6.3% for 10 g CaSiO3/plant) and non-inoculated (1.9% for 5 g CaSiO3/plant and 4.9% for 10 g CaSiO3/plant) plants at 42 DAI, with a reduction in the number of tillers (12.3% for both 5 and 10 g CaSiO3/plant) and leaves (26.8% for 5 g CaSiO3/plant and 28% for 10 g CaSiO3/plant) under both inoculation treatments. Our results confirm O. glaberrima germplasm as an important source of resistance to RYMV, and critical in developing a comprehensive strategy for the control of RYMV in West Africa.

Keywords

Acknowledgement

This paper was part of the Ph.D. research of the first author with financial support from the Pan African University Institute of Life and Earth Sciences (Including Health and Agriculture), of the African Union hosted by the University of Ibadan, Ibadan, Nigeria. We are grateful to AfricaRice Gene bank for providing the plant materials and the Plant Pathology team of Africa Rice Benin for their technical support and for providing the virus strain used in this study.

References

  1. Abed-Ashtiani, F., Kadir, J.-B., Selamat, A.-B., Hanif, A. H. B.-M. and Nasehi, A. 2012. Effect of foliar and root application of silicon against rice blast fungus in MR219 rice variety. Plant Pathol. J. 28:164-171. https://doi.org/10.5423/PPJ.2012.28.2.164
  2. Abo, M. E., Sy, A. A. and Alegbejo, M. D. 1997. Rice yellow mottle virus (RYMV) in Africa: evolution, distribution, economic significance on sustainable rice production and management strategies. J. Sustain. Agric. 11:85-111. https://doi.org/10.1300/J064v11n02_08
  3. Agahi, K., Fotokian, M. H. and Farshadfar, E. 2007. Correlation and path coefficient analysis for some yield-related traits in rice genotypes (Oryza sativa L.). Asian J. Plant Sci. 6:513-517. https://doi.org/10.3923/ajps.2007.513.517
  4. Agnoun, Y. 2013. Contribution to the valorization of the African rice Oryza glaberrima landraces: agronomic and genetic importance. Ph.D. thesis. University of Abomey-Calavi, Godomey, Benin.
  5. Akinwale, M. G., Gregorio, G., Nwilene, F., Akinyele, B. O., Ogunbayo, S. A. and Odiyi, A. C. 2011. Heritability and correlation coefficient analysis for yield and its components in rice (Oryza sativa L.). Afr. J. Plant Sci. 5:207-212.
  6. Albar, L., Bangratz-Reyser, M., Hebrard, E., Ndjiondjop, M.-N., Jones, M. and Ghesquiere, A. 2006. Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to rice yellow mottle virus. Plant J. 47:417-426. https://doi.org/10.1111/j.1365-313X.2006.02792.x
  7. Bakker, W. 1970. Rice yellow mottle, a mechanically transmissible virus disease of rice in Kenya. Neth. J. Plant Pathol. 76:53-63. https://doi.org/10.1007/BF01974433
  8. Bengsch, E., Korte, F., Polster, J., Schwenk, M. and Zinkernagel, V. 1989. Reduction in symptom expression of belladonna mottle virus infection on tobacco plants by boron supply and the antagonistic action of silicon. Z. Naturforsch. 44:777-780. https://doi.org/10.1515/znc-1989-9-1013
  9. Datnoff, L. E., Rodrigues, F. A. and Seebold, K. W. 2007. Silicon and plant disease. In: Mineral nutrition and plant disease, eds. by L. E. Datnoff, W. H. Elmer and D. M. Huber, pp. 233-246. APS Press, St. Paul, MN, USA.
  10. Diagne, A., Alia, D. Y., Amovin-Assagba, E., Wopereis, M. C. S., Saito, K. and Nakelse, T. 2013. Farmer perceptions of the biophysical constraints to rice production in sub-Saharan Africa, and potential impact of research. In: Realizing Africa's rice promise, eds. by M. C. S. Wopereis, D. E. Johnson, N. Ahmadi, E. Tollens and A. Jalloh, pp. 46-68. CABI, Wallingford, UK.
  11. Dufey, I., Gheysens, S., Ingabire, A., Lutts, S. and Bertin, P. 2014. Silicon application in cultivated rices (Oryza sativa L and Oryza glaberrima Steud) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. J. Agron. Crop Sci. 200:132-142. https://doi.org/10.1111/jac.12046
  12. Dufey, I., Hakizimana, P., Draye, X., Lutts, S. and Bertin, P. 2009. QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167:143-160. https://doi.org/10.1007/s10681-008-9870-7
  13. Dufey, I., Hiel, M.-P., Hakizimana, P., Draye, X., Lutts, S., Kone, B., Drame, K. N., Konate, K. A. Sie, M. and Bertin, P. 2012. Multi-environment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Sci. 52:539-550. https://doi.org/10.2135/cropsci2009.09.0544
  14. Elsharkawy, M. M. and Mousa, K. M. 2015. Induction of systemic resistance against papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17-2 and silica (SiO2) nanopowder. Int. J. Pest Manag. 61:353-358. https://doi.org/10.1080/09670874.2015.1070930
  15. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U. S. A. 91:11-17. https://doi.org/10.1073/pnas.91.1.11
  16. Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  17. Fargette, D., Pinel, A., Traore, O., Ghesquiere, A. and Konate, G. 2002. Emergence of resistance-breaking isolates of rice yellow mottle virus during serial inoculations. Eur. J. Plant Pathol. 108:585-591. https://doi.org/10.1023/A:1019952907105
  18. Fiamohe, R., Demont, M., Saito, K., Roy-Macauley, H. and Tollens, E. 2018. How can west African rice compete in urban markets? A demand perspective for policymakers. EuroChoices 17:51-57. https://doi.org/10.1111/1746-692X.12177
  19. Food and Agriculture Organization of the United Nations. 2017a. Statistical data base. Rome, Italia. Version: December 2017. URL http//:www.fao.org/economic/RMM/ [6 January 2018].
  20. Food and Agriculture Organization of the United Nations. 2017b. Statistical data base. Rome, Italia. Version: December 2017. URL http://www.fao.org/faostat/en/#data/ [25 December 2017].
  21. Food and Agriculture Organization of the United Nations. 2019. Crop prospects and food situation - quarterly global report no. 3. Version: September 2019. Rome. URL http://www.fao.org/giews/ [6 October 2019].
  22. Frantz, J. M., Khandekar, S. and Leisner, S. 2011. Silicon differentially influences copper toxicity response in silicon-accumulator and non-accumulator species. J. Am. Soc. Hortic. Sci. 136:329-338. https://doi.org/10.21273/JASHS.136.5.329
  23. Hebrard, E., Pinel-Galzi, A., Oludare, A., Poulicard, N., Aribi, J., Fabre, S., Issaka, S., Mariac, C., Dereeper, A., Albar, L., Silue, D. and Fargette, D. 2018. Identification of a hypervirulent pathotype of rice yellow mottle virus: a threat to genetic resistance deployment in West-Central Africa. Phytopathology 108:299-307. https://doi.org/10.1094/PHYTO-05-17-0190-R
  24. Heuer, S., Miezan, K. M., Sie, M. and Gaye, S. 2003. Increasing biodiversity of irrigated rice in Africa by interspecific crossing of Oryza glaberrima (Steud.) × O. sativa indica (L.). Euphytica 132:31-40. https://doi.org/10.1023/A:1024669623283
  25. Huang, R., Jiang, L., Zheng, J., Wang, T., Wang, H., Huang, Y. and Hong, Z. 2013. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci. 18:218-226. https://doi.org/10.1016/j.tplants.2012.11.001
  26. Hull, R. 1988. The sobemovirus group. In: The plant viruses, ed. by R. Koenig, pp. 113-146. Springer, Boston, MA, USA.
  27. International Rice Research Institute. 2002. Standard evaluation system for rice. 5th ed. International Rice Research Institute, Manila, Philippine. 21 pp.
  28. Issaka, S., Basso, A., Sorho, F., Onasanya, A., Haougui, A., Sido, A. Y., Ake, S., Fargette, D. and Sere, Y. 2012. Diagnosis and importance of rice yellow mottle disease epidemics in Niger Republic. J. Appl. Biosci. 50:3501-3511.
  29. Janislampi, K. W. 2012. Effect of silicon on plant growth and drought stress tolerance. Utah State University. Version: 2012. URL http://digitalcommons.usu.edu/etd/1360/ [10 January 2018].
  30. Johnson, C. E., Driscoll, C. T., Blum, J. D., Fahey, T. J. and Battles, J. J. 2014. Soil chemical dynamics after calcium silicate addition to a northern hardwood forest. Soil Sci. Soc. Am. J. 78:1458-1468. https://doi.org/10.2136/sssaj2014.03.0114
  31. Jones, M. P., Dingkuhn, M., Aluko, G. K. and Semon, M. 1997. Interspecific Oryza sativa L. × O. glaberrima Steud. progenies in upland rice improvement. Euphytica 94:237-246. https://doi.org/10.1023/A:1002969932224
  32. Kam, H., Laing, M. D., Ouoba, J. and Ndjiondjop, M.-N. 2013. Rice traits preferred by farmers and their perceptions of rice yellow mottle virus (RYMV) disease in cascades region of Burkina Faso. Afr. J. Agric. Res. 8:2703-2712.
  33. Kobayashi, K., Sekine, K.-T. and Nishiguchi, M. 2014. Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance? J. Gen. Plant Pathol. 80:327-336. https://doi.org/10.1007/s10327-014-0527-1
  34. Kouassi, N. K., N'Guessan, P., Albar, L., Fauquet, C. M. and Brugidou, C. 2005. Distribution and characterization of rice yellow mottle virus: a threat to African farmers. Plant Dis. 89:124-133. https://doi.org/10.1094/PD-89-0124
  35. Koudamiloro, A., Nwilene, F. E., Togola, A. and Akogbeto, M. 2015. Insect vectors of rice yellow mottle virus. J. Insects 2015:721751.
  36. Kumar, A., Kumar, H., Gupta, V., Khosla, G. and Sharma, P. K. 2011. Correlation and path coefficient analysis for yield and yield component traits in rice (Oryza sativa L.). Agric. Sci. Digest 31:275-279.
  37. Kumar, C. and Nilanjaya. 2014. Correlation and path coefficient analysis of yield components in aerobic rice (Oryza sativa L.). Bioscan 9:907-913.
  38. Laha, G. S., Singh, R., Ladhalakshmi, D., Sunder, S., Prasad, M. S., Dagar, C. S. and Babu, V. R. 2017. Importance and management of rice diseases: a global perspective. In: Rice production worldwide, eds. by B. S. Chauhan, K. Jabran and G. Mahajan, pp. 303-360. Springer, Cham, Switzerland.
  39. Li, R., Li, M., Ashraf, U., Liu, S. and Zhang, J. 2019. Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Front. Plant Sci. 10:543. https://doi.org/10.3389/fpls.2019.00543
  40. Liang, Y. 1999. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217-224. https://doi.org/10.1023/A:1004526604913
  41. Liang, Y., Sun, W., Zhu, Y.-G. and Christie, P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147:422-428. https://doi.org/10.1016/j.envpol.2006.06.008
  42. Liang, Y., Wong, J. W. C. and Wei, L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475-483. https://doi.org/10.1016/j.chemosphere.2004.09.034
  43. Ma, J. F., Miyake, Y. and Takahashi, E. 2001. Silicon as a beneficial element for crop plants. Stud. Plant Sci. 8:17-39. https://doi.org/10.1016/S0928-3420(01)80006-9
  44. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press, London, UK. 889 pp.
  45. Mbonankira, J. E. 2014. Silicon alleviation of ferrous iron toxicity in rice: a physiological and genetic approach. Ph.D. thesis. Universite Catholique de Louvain, Ottignies-Louvain-laNeuve, Belgium.
  46. Meharg, C. and Meharg, A. A. 2015. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ. Exp. Bot. 120:8-17. https://doi.org/10.1016/j.envexpbot.2015.07.001
  47. Meyer, J. H. and Keeping, M. G. 2001. Past, present and future research of the role of silicon for sugarcane in southern Africa. In: Silicon in agriculture, Vol. 8, eds. by L. E. Datnoff, G. H. Snyder and G. H. Korndorfer, pp. 257-275. Elsevier, Amsterdam, The Netherlands.
  48. Moldenhauer, K., Counce, P. and Hardke, J. 2004. Rice growth and development. In: Rice production handbook, ed. by J. T. Hardke, pp. 9-20. University of Arkansas, Little Rock, AK, USA.
  49. Narayanaswamy, C., Tubana, B. and Chanda, S. 2012. Biomass and silicon uptake of wheat in response to different levels of plant-available silicon. In: ASA, CSSA and SSSA International Annual Meeting. American Society of Agronomy, Madison, WI, USA.
  50. Ndjiondjop, M. N., Semagn, K., Sie, M., Cissoko, M., Fatondji, B. and Jones, M. 2008. Molecular profiling of interspecific lowland rice populations derived from IR64 (Oryza sativa) and Tog5681 (Oryza glaberrima). Afr. J. Biotechnol. 7:4219-4229.
  51. Oladosu, Y., Rafii, M. Y., Magaji, U., Abdullah, N., Miah, G., Chukwu, S. C., Hussin, G., Ramli, A. and Kareem, I. 2018. Genotypic and phenotypic relationship among yield components in rice under tropical conditions. Biomed. Res. Int. 2018:8936767.
  52. Oludare, A., Tossou, H. T., Kini, K. and Silue, D. 2016. Diversity of rice yellow mottle virus in Benin and Togo and screening for resistant accessions. J. Phytopathol. 164:924-935. https://doi.org/10.1111/jph.12512
  53. Orjuela, J., Thiemele Deless, E. F., Kolade, O., Cheron, S., Ghesquiere, A. and Albar, L. 2013. A recessive resistance to rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. Mol. Plant-Microbe Interact. 26:1455-1463. https://doi.org/10.1094/MPMI-05-13-0127-R
  54. Pidon, H., Cheron, S., Ghesquiere, A. and Albar, L. 2020. Allele mining unlocks the identification of RYMV resistance genes and alleles in African cultivated rice. BMC Plant Biol. 20:222. https://doi.org/10.1186/s12870-020-02433-0
  55. Pidon, H., Ghesquiere, A., Cheron, S., Issaka, S., Hebrard, E., Sabot, F., Kolade, O., Silue, D. and Albar, L. 2017. Fine mapping of RYMV3: a new resistance gene to rice yellow mottle virus from Oryza glaberrima. Theor. Appl. Genet. 130:807-818. https://doi.org/10.1007/s00122-017-2853-0
  56. Pinel-Galzi, A., Hebrard, E., Traore, O., Silue, D. and Albar, L. 2018. Protocol for RYMV inoculation and resistance evaluation in rice seedlings. Bio-protocol 8:e2863.
  57. Pinel-Galzi, A., Traore, O., Sere, Y., Hebrard, E. and Fargette, D. 2015. The biogeography of viral emergence: rice yellow mottle virus as a case study. Curr. Opin. Virol. 10:7-13. https://doi.org/10.1016/j.coviro.2014.12.002
  58. Sakamoto, T. and Matsuoka, M. 2008. Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol. 11:209-214. https://doi.org/10.1016/j.pbi.2008.01.009
  59. Sakr, N. 2016. Silicon control of bacterial and viral diseases in plants. J. Plant Prot. Res. 56:331-336. https://doi.org/10.1515/jppr-2016-0052
  60. Savant, N. K., Snyder, G. H. and Datnoff, L. E. 1996. Silicon management and sustainable rice production. Adv. Agron. 58:151-199. https://doi.org/10.1016/S0065-2113(08)60255-2
  61. Sere, Y., Fargette, D., Abo, M. E., Wydra, K., Bimerew, M., Onasanya, A. and Akator, S. K. 2013. Managing the major diseases of rice in Africa. In: Realizing Africa's rice promise, eds. by M. C. S. Wopereis, D. E. Johnson, N. Ahmadi, E. Tollens and A. Jalloh, pp. 213-228. CABI, Wallingford, UK
  62. Sharifi, P. 2018. Sequential path analysis for determination of relationships between yield-related characters and yield and amylose content in rice. Philipp. J. Crop Sci. 43:73-79.
  63. Sie, M., Dogbe, S. Y. and Coulibaly, M. 2005. Selection of interspecific hybrids (O. sativa × O. glaberrima or lowland NERICAs) and intraspecifics adapted to rainfed lowland growing conditions. Int. Rice Comm. Newsl. 54:47-51.
  64. Tamai, K. and Ma, J. F. 2003. Characterization of silicon uptake by rice roots. New Phytol. 158:431-436. https://doi.org/10.1046/j.1469-8137.2003.00773.x
  65. Thiemele, D., Boisnard, A., Ndjiondjop, M.-N., Cheron, S., Sere, Y., Ake, S., Ghesquiere, A. and Albar, L. 2010. Identification of a second major resistance gene to rice yellow mottle virus, RYMV2, in the African cultivated rice species, O. glaberrima. Theor. Appl. Genet. 121:169-179. https://doi.org/10.1007/s00122-010-1300-2
  66. Traore, O., Pinel-Galzi, A., Sorho, F., Sarra, S., Rakotomalala, M., Sangu, E., Kaneyeka, Z., Sere, Y., Konate, G. and Fargette, D. 2009. A reassessment of the epidemiology of rice yellow mottle virus following recent advances in field and molecular studies. Virus Res. 141:258-267. https://doi.org/10.1016/j.virusres.2009.01.011
  67. Tsujimoto, Y., Muranaka, S., Saito, K. and Asai, H. 2014. Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Saharan Africa. Field Crops Res. 155:1-9. https://doi.org/10.1016/j.fcr.2013.10.003
  68. Wopereis, M. 2013. New generation rice varieties unveiled for Africa. Version: November 2013. URL http://www.africarice.org/warda/newsrel-ARICA-May-13.asp/ [13 October 2017].
  69. Zellner, W., Frantz, J. and Leisner, S. 2011. Silicon delays tobacco ringspot virus systemic symptoms in Nicotiana tabacum. J. Plant Physiol. 168:1866-1869. https://doi.org/10.1016/j.jplph.2011.04.002
  70. Zhu, Z., Wei, G., Li, J., Qian, Q. and Yu, J. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167:527-533. https://doi.org/10.1016/j.plantsci.2004.04.020