DOI QR코드

DOI QR Code

시스템다이내믹스 모델을 이용한 농업용수 시스템의 기후 복원력 평가

Climate Resilience Assessment of Agricultural Water System Using System Dynamics Model

  • Choi, Eunhyuk (Rural Research Institute, Korea Rural Community Corporation)
  • 투고 : 2021.03.18
  • 심사 : 2021.06.11
  • 발행 : 2021.07.31

초록

This study aims at testing a hypothesis that the resilience of agricultural water systems is characterized by trade-offs and synergies of effects from climate and socioeconomic change. To achieve this, an Agricultural Water System Climate Resilience Assessment (ACRA) framework is established to evaluate comprehensive resilience of an agricultural water system to the combined impacts of the climate and socioeconomic changes with a case study in South Korea. Understanding dynamic behaviors of the agricultural water systems under climate and socioeconomic drivers is not straightforward because the system structure includes complex interactions with multiple feedbacks across components in water and agriculture sectors and climate and socioeconomic factors, which has not been well addressed in the existing decision support models. No consideration of the complex interactions with feedbacks in a decision making process may lead to counterintuitive and untoward evaluation of the coupled impacts of the climate and socioeconomic changes on the system performance. In this regard, the ACRA framework employs a System Dynamics (SD) approach that has been widely used to understand dynamics of the complex systems with the feedback interactions. In the ACRA framework applied to the case study in South Korea, the SD model works along with HOMWRS simulation. The ACRA framework will help to explore resilience-based strategies with infrastructure investment and management options for agricultural water systems.

키워드

과제정보

본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 농업기반 및 재해대응 기술개발 사업의 지원을 받아 연구되었음 (121032-3).

참고문헌

  1. Ackoff, R. L., 1971. Towards a system of systems concepts. Management Science 17(11): 661-671. doi:10.1287/mnsc.17.11.661.
  2. Ashby, W. R., 1991. Requisite variety and its implications for the control of complex systems. Facets of Systems Science (405-417). Boston, MA, Springer.
  3. Barthel, S., and C. Isendahl, 2013. Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecological Economics 86: 224-234. doi:10.1016/j.ecolecon.2012.06.018.
  4. Bizikova, L., P. Larkin, S. Mitchell, and R. Waldick, 2019. An indicator set to track resilience to climate change in agriculture: A policy-maker's perspective. Land Use Policy 82: 444-456. doi:10.1016/j.landusepol.2018.11.057.
  5. Choi, E. H., 2021. Climate change impact assessment of agricultural reservoir using system dynamics model: Focus on Seongju reservoir. Korean Journal of Agricultural Science 48(2): 311-331. doi:10.7744/kjoas.20210024.
  6. Cutforth, L. B., C. A. Francis, G. D. Lynne, D. A. Mortensen, and K. M. Eskridge, 2001. Factors affecting farmers' crop diversity decisions: An integrated approach. American Journal of Alternative Agriculture 16(4): 168-176. doi:10.1017/S0889189300009164.
  7. Ford, A., and F. A. Ford, 1999. Modeling the environment: An introduction to system dynamics modeling of environmental systems. Washington DC, Island Press.
  8. Fowler, H. J., C. G. Kilsby, and P. E. O'Connell, 2003. Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resources Research 39(8): 1222. doi:10.1029/2002WR001778.
  9. Grigg, N. S., 2012. Water, wastewater, and stormwater infrastructure management. Boca Raton, FL, CRC Press.
  10. Hashemi, M., H. M. Zadeh, P. D. Arasteh, and M. Zarghami, 2019. Economic and environmental impacts of cropping pattern elements using systems dynamics. Civil Engineering Journal 5(5): 1020-1032. doi:10.28991/cej-2019-03091308.
  11. Hashimoto, T., J. R. Stedinger, and D. P. Loucks, 1982. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research 18(1): 14-20. doi:10.1029/WR018i001p00014.
  12. IPCC, 2001. The scientific basis. IPCC Third Assessment Report of Working Group I on Climate Change, ISBN 0521-014-95-6.
  13. IPCC, 2007. Climate Change 2007: The physical science basis. New York, NY, Cambridge University Press.
  14. Jeong, H. S., K. Suh, T. I. Jang, C. H. Seong, H. K. Kim, and S. W. Park, 2013. Economic analysis of wastewater reuse systems for agricultural irrigation using a system dynamics approach. Journal of the Korean Society of Agricultural Engineers 55(2): 9-20 (in Korean). doi:10.5389/KSAE.2013.55.2.009.
  15. KMA, 2018. Report on climate change projection in Korea. Seoul.
  16. KRC, 2001. HOMWRS manual. Naju, KRC (in Korean).
  17. Kulak, O., S. Cebi, and C. Kahraman, 2010. Applications of axiomatic design principles: A literature review. Expert Systems with Applications 37(9): 6705-6717. doi:10.1016/j.eswa.2010.03.061.
  18. Lee, S., S. Abdul-Talib, and H. Park, 2012. Lessons from water scarcity of the 2008-2009 Gwangdong reservoir: Needs to address drought management with the adaptiveness concept. Aquatic Sciences 74(2): 213-227. doi:10.1007/s00027-011-0213-8.
  19. Lerner, A. Y., 2012. Fundamentals of cybernetics. Berlin, Springer Science & Business Media.
  20. Malek, K., J. C. Adam, C. O. Stockle, and R. T. Peters, 2018. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses. Journal of Hydrology 561: 444-460. doi:10.1016/j.jhydrol.2017.11.046.
  21. Nam, W. H., J. Y. Choi, and E. M. Hong, 2015. Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea. Agricultural Water Management 152: 173-187. doi:10.1016/j.agwat.2015.01.012.
  22. Park, S. W., K. L. Ki m, B. J. Ki m, and K. Y. Lim, 2010. Development of a system dynamics model to support the decision making processes in the operation and management of water supply systems. Journal of Korea Water Resources Association 43(7): 609-623 (in Korean). doi:10.3741/JKWRA.2010.43.7.609.
  23. Park, S. W., T. G. Lee, B. J. Kim, and T. Y. Kim, 2012. Development of a system dynamics model for the efficient operation and maintenance of sewerage systems. Journal of Korea Water Resources Association 45(1): 101-111 (in Korean). doi:10.3741/JKWRA.2012.45.1.101.
  24. Rauch, E., D. T. Matt, and P. Dallasega, 2016. Application of axiomatic design in manufacturing system design: A literature review. Procedia CIRP 53: 1-7. doi:10.1016/j.procir.2016.04.207.
  25. Rosenzweig, C., K. M. Strzepek, D. C. Major, A. Iglesias, D. N. Yates, A. McCluskey, and D. Hillel, 2004. Water resources for agriculture in a changing climate: International case studies. Global Environmental Change 14(4): 345-360. doi:10.1016/j.gloenvcha.2004.09.003.
  26. Shin, S., S. Lee, S. J. Burian, D. R. Judi, and T. McPherson, 2020. Evaluating resilience of water distribution networks to operational failures from cyber-physical attacks. Journal of Environmental Engineering 146(3): 04020003. doi:10.1061/(ASCE)EE.1943-7870.0001665.
  27. Shin, S., S. Lee, D. Judi, M. Parvania, E. Goharian, T. McPherson, and S. Burian, 2018. A Systematic review of quantitative resilience measures for water infrastructure systems. Water 10(2): 164. doi:10.3390/w10020164.
  28. Shin, S., and H. Park, 2018. Achieving cost-efficient diversification of water infrastructure system against uncertainty using modern portfolio theory. Journal of Hydroinformatics 20(3): 739-750. doi:10.2166/hydro.2018.240.
  29. Suh, N. P., 2001. Axiomatic design: Advances and applications (the oxford series on advanced manufacturing). Oxford, Oxford University Press.
  30. Yazdani, A., R. A. Otoo, and P. Jeffrey, 2011. Resilience enhancing expansion strategies for water distribution systems: A network theory approach. Environmental Modelling and Software 26(12): 1574-1582. doi:10.1016/j.envsoft.2011.07.016.
  31. Wiener, N., 1988. The human use of human beings: Cybernetics and society. Boston, MA, Da Capo Press.
  32. Yoon, K. S., Y. J. Jo, S. H. Yoo, and Y. Her, 2019. Assessing agricultural reservoir as the sources of environmental flow: Case study in Korea. 3rd World Irrigation Forum.