DOI QR코드

DOI QR Code

Evaluation of Regional Adaptability in Introduced Super Sweet Corn Hybrids and Heritability of Agronomic Traits

도입 초당옥수수 교잡종의 지역 적응성 및 농업 형질의 유전력 평가

  • Lee, Shin-Young (Department of Agronomy, Chungbuk National University) ;
  • Kang, Jong-won (Department of Agronomy, Chungbuk National University) ;
  • Wang, Seung-hyun (Maize Research Institute, Gangwon-do Agricultural Research and Extension Services) ;
  • Park, Tai-choon (Department of Agronomy, Chungbuk National University) ;
  • Chung, Jong-Wook (Department of Industrial Plant Science & Technology, Chungbuk National University) ;
  • So, Yoon-Sup (Department of Crop Science, Chungbuk National University)
  • 이신영 (충북대학교 대학원 농학과) ;
  • 강종원 (충북대학교 대학원 농학과) ;
  • 왕승현 (강원도농업기술원 옥수수연구소) ;
  • 박태춘 (충북대학교 대학원 농학과) ;
  • 정종욱 (충북대학교 특용식물학과) ;
  • 소윤섭 (충북대학교 식물자원학과)
  • Received : 2021.02.19
  • Accepted : 2021.05.10
  • Published : 2021.06.01

Abstract

This study evaluated newly introduced, commercial super sweet corn hybrids (Zea mays L.) for their potential as breeding materials. Agronomic traits were measured and variance components were obtained using a linear mixed model to estimate the heritability. The trials were carried out in 2018 at two locations (Haenam and Oksan in South Korea). All traits had low heritability, except for mid tasseling and silking days. These traits with low heritability mostly had low genetic variance component estimate. In case of ear height ratio, significant genotype by location appeared to be responsible for low genetic variance, which in turn led to low heritability. Low heritability estimates from the trials with commercial hybrids were perhaps because those hybrids were highly improved for commercial success. Hence, this does not necessarily point to them having poor potential as breeding materials. To overcome low heritability, significant genotype by environment interaction, and achieve high selection efficiency, intermating among hybrids is recommended to create new recombinants before inbred line development.

본 실험은 지역 적응성 시험을 통한 도입 초당옥수수 자원의 농업 형질을 조사하고 혼합 선형 모형을 이용하여 조사 형질의 분산 구성요소를 추정하고 이를 통해 형질들의 유전력을 추정함으로써 신규 자원이 가진 육종재료로서의 가치를 평가하고, 이를 이용한 초당 옥수수 품종 육종 과정에서 선택할 수 있는 육종 및 선발 방법을 도모하고자 하였다. 1. 출웅기와 출사기를 제외한 모든 형질의 유전력은 낮게 추정되었는데 이러한 형질은 분산구성요소 중 유전분산이 낮게 추정되었다. 착수고율의 경우 품종과 지역 간의 유의한 상호작용효과로 인해 낮은 유전분산이 추정된 것으로 보인다. 2. 측정 형질의 낮은 유전력 추정치는 시험 재료가 모두 최신 상업용 품종이기 때문일 것으로 사료된다. 따라서 육종재료로서의 낮은 잠재력을 의미하는 것은 아니다. 3. 낮은 유전분산과 유의미한 상호작용 효과를 극복하고 선발 효율을 극대화 하기 위하여 교잡종의 직접적인 자가 수정을 통한 자식 계통 개발을 진행하기 보다 intermating을 통한 유전자 재조합을 먼저 유기하는 것이 바람직 할 것으로 보인다.

Keywords

Acknowledgement

본 논문은 골든시드프로젝트(세부과제번호: 213009-05-3-SB620)의 지원으로 수행되었습니다.

References

  1. Abe, A. and C. A. Adelegan. 2019. Genetic variability, heritability and genetic advance in shrunken-2 super-sweet corn (Zea mays L. saccharata) populations. Journal of Plant Breeding and Crop Science, 11(4) : 100-105. https://doi.org/10.5897/jpbcs2018.0799
  2. Busey, P. 1983. Management of crop breeding, In: Crop Breeding, p. 31-54. Ed. Wood, D. R. Crop Sci. Soc. Amer., Madison, WI., USA.
  3. Falconer, D. S. and T. F. C. Mackay. 2005. Introduction to Quantitative Genetics. 4th Ed. Pearson Prentice Hall, Upper Saddle River, NJ, USA.
  4. Han, Y. and R. Adolphs. 2020. Estimating the heritability of psychological measures in the human connectome project dataset. Plos One. doi: 10.1371/journal.pone.0235860
  5. Hanson, W. and H. Robinson. 1963. Statistical Genetics and Plant Breeding. National Academy of Sciences - National Research Council, Washington, DC. USA.
  6. Holland, J. B., W. E. Nyquist, and C. T. Cervantes-Martinez. 2003. Estimating and interpreting heritability for plant breeding: An update. Plant Breed. Rev. 2003 : 9-112.
  7. Kleinhenz, M. D. 2003. Sweet corn variety trials in Ohio: Recent top performers and suggestions for future evaluation. Hort-Technology 13 : 711-718. https://doi.org/10.21273/HORTTECH.13.4.0711
  8. Knight R. L. 1948. Dictionary of Genetics, Chronica Botanica Co., Waltham, MA, USA.
  9. Lourenco, D. A. L., B. O. Fragomeni, H. L. Bradford, I. R. Menezes, J. B. S. Ferraz, I. Aguilar, S. Tsuruta, and I. Misztal. 2017. Implications of SNP weighting on single-step genomic predictions for different reference population sizes. J. Anim. Breed. Genet. 134 : 463-471. https://doi.org/10.1111/jbg.12288
  10. Oldenbroek, K. and L. van der Waaij. 2015. Textbook animal breeding : animal breeding and genetics for BSc students. Centre for Genetic Resources and Animal Breeding and Genomics Group, Wageningen University and Research Centre. https://edepot.wur.nl/365431.
  11. Rangarajan, A., B. Ingall, M. Orfanedes, and D. Wolfe. 2002. In-row spacing and cultivar affects ear yield and quality of early-planted sweet corn. Hort-Technology 12(3) : 410-415.
  12. RDA. 2011. Manual for maize production. Rural Development Administration.
  13. Smith, A., B. Cullis, and A. Gilmour. 2001. The analysis of crop variety evaluation data in Australia. Aust. N. Z. J. Stat. 43 : 129-145. https://doi.org/10.1111/1467-842X.00163
  14. So, Y. S., V. O. Adetimirin, and S. K. Kim. 2013. Observational study on the recovery from root lodging at flowering time and yield reduction in maize (Zea mays L.). Plant Breed. Biotech. 1(2) : 171-177. https://doi.org/10.9787/PBB.2013.1.2.171
  15. Tracy, W. F. 2001. Sweet corn. In: Specialty corns, 2nd Ed. p. 155-196. Ed. Hallauer, A. R. CRC Press, NY, USA.