DOI QR코드

DOI QR Code

Tourist Transition Model among Tourist Attractions based on GPS Trajectory

  • Received : 2021.02.28
  • Accepted : 2021.04.28
  • Published : 2021.06.30

Abstract

Before COVID-19, tourist destinations have experienced problems with congestion of both famous tourist attractions and public transportation. Over-tourism is not an issue at this time, but it is likely to rekindle after the COVID-19 pandemic ends. One method of mitigating over-tourism is to estimate tourist behavior using a tourist transition model and consequently adjust public transportation operations. In this study, we propose a construction method for a model of tourist transitions among tourist attractions based on tourist GPS trajectory data. We construct tourist transition models using actual trajectory data for tourists staying in the vicinity of Kyoto City. The results verify the model performance.

Keywords

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP17K00438 and JP21K12140.

References

  1. Ajao, O., Hong, J., & Liu, W. (2015). A survey of location inference techniques on twitter. Journal of Information Science, 41(6), 855-864. https://doi.org/10.1177/0165551515602847
  2. Ashbrook, D., & Starner, T. (2003). Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing, 7(5), 275-286. https://doi.org/10.1007/s00779-003-0240-0
  3. Cheng, Z., Caverlee, J., & Lee, K. (2010). You are where you tweet: A content-based approach to geolocating twitter users. Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Canada, 759-768.
  4. Crandall, D. J., Backstrom, L., Huttenlocher, D., & Kleinberg, J. (2009). Mapping the world's photos. Proceedings of the 18th International Conference on World Wide Web, Spain, 761-770.
  5. Dang-Nguyen, D. T., Piras, L., Giacinto, G., Boato, G., & Natale, F. G. D. (2017). Multimodal retrieval with diversification and relevance feedback for tourist attraction images. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 13(4), 1-24.
  6. Dodds, R., & Butler, R. (2019). Overtourism: Issues, realities and solutions (Vol. 1). Berlin: Walter de Gruyter GmbH & Co KG.
  7. Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779-782. https://doi.org/10.1038/nature06958
  8. Han, S., Ren, F., Du, Q., & Gui, D. (2020). Extracting representative images of tourist attractions from flickr by combing an improved cluster method and multiple deep learning models. ISPRS International Journal of Geo-Information, 9(2), 81. https://doi.org/10.3390/ijgi9020081
  9. Horvitz, E., & Krumm, J. (2012). Some help on the way: Opportunistic routing under uncertainty. Proceedings of the 2012 ACM Conference on Ubiquitous Computing, USA, 371-380.
  10. Ieiri, Y., Nakajima, Y., & Hishiyama, R. (2018). Construction of the method to discovery potential sightseeing spot based on information integration process. The IEICE Transaction D, 101(9), 1325-1333.
  11. Ikawa, Y., Enoki, M., & Tatsubori, M. (2012). Location inference using microblog messages. Proceedings of the 21st International Conference on World Wide Web, France, 687-690.
  12. Kasahara, H., Mori, M., Mukunoki, M., & Minoh, M. (2015). Tourist status estimation from GPS trajectory using environmental constraints. Proceedings of the Annual Conference of JSAI, Japan, Vol. 29.
  13. Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997). Grouplens: Applying collaborative filtering to usenet news. Communications of the ACM, 40(3), 77-87. https://doi.org/10.1145/245108.245126
  14. Krizaj, D., Brodnik, A., & Bukovec, B. (2014). A tool for measurement of innovation newness and adoption in tourism firms. International Journal of Tourism Research, 16(2), 113-125. https://doi.org/10.1002/jtr.1905
  15. Krumm, J., & Horvitz, E. (2006). Predestination: Inferring destinations from partial trajectories. International Conference on Ubiquitous Computing, USA, 243-260.
  16. Kurashima, T., Iwata, T., Irie, G., & Fujimura, K. (2010). Travel route recommendation using geotags in photo sharing sites. Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Canada, 579-588.
  17. Kurata, Y., & Hara, T. (2013). Ct-planner4: Toward a more user-friendly interactive day-tour planner. In Information and communication technologies in tourism 2014 (pp. 73-86). Cham: Springer.
  18. Kuriyama, H., Murata, Y., Shibata, N., Yasumoto, K., & Ito, M. (2007). Congestion alleviation scheduling technique for car drivers based on prediction of future congestion on roads and spots. 2007 IEEE Intelligent Transportation Systems Conference, USA, 910-915.
  19. Lv, Q., Qiao, Y., Ansari, N., Liu, J., & Yang, J. (2016). Big data driven hidden Markov model based individual mobility prediction at points of interest. IEEE Transactions on Vehicular Technology, 66(6), 5204-5216. https://doi.org/10.1109/TVT.2016.2611654
  20. Maeda, T. N., Tsubouchi, K., & Toriumi, F. (2017). Next place prediction in unfamiliar places considering contextual factors. Proceedings of the 25th ACM Sigspatial International Conference on Advances in Geographic Information Systems, USA, 1-4.
  21. Massimo, D., & Ricci, F. (2019). Clustering users' pois visit trajectories for next-poi recommendation. In Information and communication technologies in tourism 2019 (pp. 3-14). Cham: Springer.
  22. Okada, K., Yokoyama, T., Okuda, T., Kashihara, S., Kadibayashi, Y., & Yamaguchi, S. (2008). Proposal of a method for extracting points of interest from user's trajectory. Multi Media Communication and Dispersion Treatment (DPS)) Research Report of Information Processing Society of Japan, 89-94.
  23. Omer, I., & Jiang, B. (2015). Can cognitive inferences be made from aggregate traffic flow data? Computers, Environment and Urban Systems, 54, 219-229. https://doi.org/10.1016/j.compenvurbsys.2015.08.005
  24. Palma, A. T., Bogorny, V., Kuijpers, B., & Alvares, L. O. (2008). A clusteringbased approach for discovering interesting places in trajectories. Proceedings of the 2008 ACM Symposium on Applied Computing, Brazil, 863-868.
  25. Pat, B., Kanza, Y., & Naaman, M. (2015). Geosocial search: Finding places based on geotagged social-media posts. Proceedings of the 24th International Conference on World Wide Web, Italy, 231-234.
  26. Peng, X., & Huang, Z. (2017). A novel popular tourist attraction discovering approach based on geo-tagged social media big data. ISPRS International Journal of Geo-Information, 6(7), 216. https://doi.org/10.3390/ijgi6070216
  27. Quercia, D., Schifanella, R., & Aiello, L. M. (2014). The shortest path to happiness: Recommending beautiful, quiet, and happy routes in the city. Proceedings of the 25th ACM Conference on Hypertext and Social Media, Chile, 116-125.
  28. Schulz, A., Hadjakos, A., Paulheim, H., Nachtwey, J., & Muhlhauser, M. (2013, Jun.). A multi-indicator approach for geolocalization of tweets. Proceedings of the International AAAI Conference on Web and Social Media, 7(1). https://ojs.aaai.org/index.php/ICWSM/article/view/14396
  29. Suhara, Y., Toda, H., Nishikawa, J., & Washizaki, S. (2013). Simultaneous estimation of dwell points and visit pois from GPS logs using integer programming. IPSJ SIG Technical Report (DBS), 2013(24), 1-8.
  30. Takimoto, Y., Nishida, K., Endo, Y., Toda, H., Sawada, H., & Ishikawa, H. (2017). Personalized destination prediction with consideration of time zone. IEICE Transactions D, 100(4), 472- 484.
  31. Tamura, K., Kasahara, S., & Hibiki, M. (2014). Modeling tourist activity via probe-car data and stop area similarity. Society for Tourism Informatics, 10(1), 101-112.
  32. Xue, A. Y., Qi, J., Xie, X., Zhang, R., Huang, J., & Li, Y. (2015). Solving the data sparsity problem in destination prediction. The VLDB Journal, 24(2), 219-243. https://doi.org/10.1007/s00778-014-0369-7
  33. Xue, A. Y., Zhang, R., Zheng, Y., Xie, X., Huang, J., & Xu, Z. (2013). Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. 2013 IEEE 29th International Conference on Data Engineering (ICDE), Australia, 254-265.
  34. Yang, C., Na, J., Li, G., Li, Y., & Zhong, J. (2018). Neural network for complex systems: Theory and applications. London: Hindawi.
  35. Zach, F., & Gretzel, U. (2011). Tourist-activated networks: Implications for dynamic bundling and en route recommendations. Information Technology & Tourism, 13(3), 229-238. https://doi.org/10.3727/109830512X13283928066959
  36. Zheng, Y., Zhang, L., Xie, X., & Ma, W. Y. (2009). Mining interesting locations and travel sequences from GPS trajectories. Proceedings of the 18th International Conference on World Wide Web, Spain, 791-800.
  37. Zheng, Y. T., Li, Y., Zha, Z. J., & Chua, T. S. (2011). Mining travel patterns from GPS-tagged photos. International Conference on Multimedia Modeling, Taiwan, 262-272.
  38. Ziebart, B. D., Maas, A. L., Dey, A. K., & Bagnell, J. A. (2008). Navigate like a cabbie: Probabilistic reasoning from observed context-aware behavior. Proceedings of the 10th International Conference on Ubiquitous Computing, Korea, 322-331.