DOI QR코드

DOI QR Code

In vitro Immunostimulatory Activity of Bok Choy (Brassica campestris var. chinensis) Sprouts in RAW264.7 Macrophage Cells

  • Received : 2021.04.05
  • Accepted : 2021.05.20
  • Published : 2021.06.01

Abstract

Bok choy is one of Brassica vegetables widely consumed worldwide. Brassica vegetables have been reported to exert various pharmacological activities such as antioxidant, anti-cancer and cardioprotective activity. However, studies on immunostimulatory activity of bok choy sprout have not been conducted properly. Thus, in this study, we investigated in vitro immunostimulatory activity of bok choy sprout extract (BCS) using mouse macrophage RAW264.7 cells. Our results showed that BCS increased the production of immunomodulators such as NO, iNOS, IL-1β, IL-6, IL-12, TNF-α and MCP-1, and phagocytic activity in RAW264.7 cells. BCS activated MAPK, NF-κB and PI3K/AKT signaling pathways. However, BCS-mediated production of immunomodulators was dependent on JNK, NF-κB and PI3K/AKT signaling pathways. the mRNA expression of TLR2 were significantly increased by BCS, TLR2 inhibition by anti-TLR2 dramatically suppressed the production of immunomodulators by BCS. In addition, TLR2 inhibition by anti-TLR2 significantly reduced BCS-mediated phosphorylation level of AKT, JNK and NF-κB. From these results, BCS may have immunostimulatory activity via TLR2-MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, BCS expected to be used as a potential immune-enhancing agent.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1D1A3A03103685 and NRF-2018R1A6A1A03024862).

References

  1. Akira, S. 2009. Innate immunity to pathogens: Diversity in receptors for microbial recognition. Immunol. Rev. 227:5-8. https://doi.org/10.1111/j.1600-065X.2008.00739.x
  2. Akira, S., S. Uematsu and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801. https://doi.org/10.1016/j.cell.2006.02.015
  3. Billack, B. 2006. Macrophage activation: Role of toll-like receptors, nitric oxide, and nuclear factor kappa B. Am. J. Pharm. Educ. 70:102. https://doi.org/10.5688/aj7005102
  4. Campos, M.A., I.C. Almeida, O. Takeuchi, S. Akira, E.P. Valente, D.O. Procopio, L.R. Travassos, J.A. Smith, D.T. Golenbock and R.T. Gazzinelli. 2001. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167:416-423. https://doi.org/10.4049/jimmunol.167.1.416
  5. Chang, Z.L. 2010. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm. Res. 59:791-808. https://doi.org/10.1007/s00011-010-0208-2
  6. Chen, C., Y.H. Chen and W.W. Lin. 1999. Involvement of p38 mitogen-activated proteinkinase in lipopolysaccharideinduced iNOS and COX-2 expression in J774 macrophages. Immunology 97:124-129. https://doi.org/10.1046/j.1365-2567.1999.00747.x
  7. Cho, B.O., H.W. Ryu, Y. So, C.W. Lee, C.H. Jin, H.S. Yook, Y.W. Jeong, J.C. Park and I.Y. Jeong. 2014. Anti-inflammatory effect of mangostenone F in lipopolysaccharide-stimulated RAW264.7 macrophages by suppressing NF-kappaB and MAPK activation. Biomol. Ther. 22:288-294. https://doi.org/10.4062/biomolther.2014.052
  8. Cho, J.W., K.S. Lee and C.W. Kim. 2007. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-κB and MAPKs as potential upstream targets. Int. J. Mol. Med. 19:469-474.
  9. Cho, Y.C., T.T. Bach, B.R. Kim, H.L. Vuong and S. Cho. 2017. Spilanthes acmella inhibits inflammatory responses via inhibition of NF-κB and MAPK signaling pathways in RAW264.7 macrophages. Mol. Med. Rep. 16: 339-346. https://doi.org/10.3892/mmr.2017.6555
  10. Deng, C., J. Shang, H. Fu, J. Chen, H. Liu and J. Chen. 2016. Mechanism of the immunostimulatory activity by a polysaccharide from Dictyophora indusiata. Int. J. Biol. Macromol. 91:752-759. https://doi.org/10.1016/j.ijbiomac.2016.06.024
  11. Divate, R.D. and Y.C. Chung. 2017. In vitro and in vivo assessment of anti-inflammatory and immunomodulatory activities of Xylaria nigripes mycelium. J. Funct. Foods 35:81-89. https://doi.org/10.1016/j.jff.2017.05.027
  12. Fisher, W.G., P.C. Yang, R.K. Medikonduri and R. Saleet Jafri. 2006. NFAT and NFκB activation in T lymphocytes: A model of differential activation of gene expression. Ann. Biomed. Eng. 34:1712-1728. https://doi.org/10.1007/s10439-006-9179-4
  13. Gasparrini, M., T.Y. Forbes-Hernandez, F. Giampieri, S. Afrin, J.M. Alvarez-Suarez, L. Mazzoni, B. Mezzetti, J.L. Quilese and M. Battino. 2017. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food. Chem. Toxicol. 102:1-10. https://doi.org/10.1016/j.fct.2017.01.018
  14. Gioia, F.D., N. Tzortzakis, Y. Rouphael, M.C. Kyriacou, S.L. Sampaio, I.C.F.R. Ferreira and S.A. Petropoulos. 2020. Grown to be blue-antioxidant properties and health effects of colored vegetables. Part II: Leafy, fruit, and other vegetables. Antioxidants 9:97. https://doi.org/10.3390/antiox9020097
  15. Guo, F., H. He, Z.C. Fu, S. Huang, T. Chen, C.J. Papasian, L.R. Morse, Y. Xu, R.A. Battaglino, X.F. Yang, Z. Jiang, H.B. Xin and M. Fu. 2015. Adipocyte-derived PAMM suppresses macrophage inflammation by inhibiting MAPK signalling. Biochem. J. 472:309-318. https://doi.org/10.1042/BJ20150019
  16. Hayden, M.S. and S. Ghosh. 2008. Shared principles in NF-κB signaling. Cell 132:344-362. https://doi.org/10.1016/j.cell.2008.01.020
  17. Hoffmann, P.R. and M.J. Berry. 2008. The influence of selenium on immune responses. Mol. Nutr. Food Res. 52:1273-1280. https://doi.org/10.1002/mnfr.200700330
  18. Hommes, D.W., M.P. Peppelenbosch and S.J. van Deventer. 2003. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52:144-151. https://doi.org/10.1136/gut.52.1.144
  19. Jin, M.S. and J.O. Lee. 2008. Structures of the toll-like receptor family and its ligand complexes. Immunity 29:182-191. https://doi.org/10.1016/j.immuni.2008.07.007
  20. Jung, C.H., H. Jung, Y.C. Shin, J.H. Park, C.Y. Jun, H.M. Kim, H.S. Yim, M.G. Shin, H.S. Bae, S.H. K im and S.G. Ko. 2007. Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage. J. Ethnopharmacol. 113:183-187. https://doi.org/10.1016/j.jep.2007.05.023
  21. Kang, J.Y., X. Nan, M.S. Jin, S.J. Youn, Y.H. Ryu, S. Mah, S.H. Han, H. Lee, S.G. Paik and J.O. Lee. 2009. Recognition of lipopeptide patterns by toll-like receptor 2-toll-like receptor 6 heterodimer. Immunity 31:873-884. https://doi.org/10.1016/j.immuni.2009.09.018
  22. Karin, M. and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu. Rev. Immunol. 18:621-663. https://doi.org/10.1146/annurev.immunol.18.1.621
  23. Kasimu, R., C. Chen, X. Xie and X. Li. 2017. Water-soluble polysaccharide from Erythronium sibiricum bulb: Structural characterisation and immunomodulating activity. Int. J. Biol. Macromol. 105:452-462. https://doi.org/10.1016/j.ijbiomac.2017.07.060
  24. Kawai, T. and S. Akira. 2006. TLR signaling. Cell. Death Differ. 13:816-825. https://doi.org/10.1038/sj.cdd.4401850
  25. Kawai, T. and S. Akira. 2007. TLR signaling. Semin. Immunol. 19: 24-32. https://doi.org/10.1016/j.smim.2006.12.004
  26. Kawai, T. and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 11:373-384. https://doi.org/10.1038/ni.1863
  27. Kawamoto, T., M. Ii, T. Kitazaki, Y. Iizawa, and H. Kimura. 2008. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur. J. Pharmacol. 584:40-48. https://doi.org/10.1016/j.ejphar.2008.01.026
  28. Khalil, A.W., A. Zeb, F. Mahmmod, S. Tariq, A.B. Khattak and H. Shah. 2007. Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.) LWT 40:937-945. https://doi.org/10.1016/j.lwt.2006.05.009
  29. Khanam, U.K.S., S. Oba, E. Yanase and Y. Murakami. 2012. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods 4:979-987. https://doi.org/10.1016/j.jff.2012.07.006
  30. Kim, D.S. and K.B. Lee. 2010. Physiological characteristics and manufacturing of the processing products of sprout vegetables. Korean J. Food Cookery Sci. 26:238-245.
  31. Koh, T.J. and L.A. DiPietro. 2011. Inflammation and wound healing: the role of the macrophage. Exp. Rev. Mol. Med. 13:e23. https://doi.org/10.1017/S1462399411001943
  32. Kopf, M., Bachmann, M.F. and B.J. Marsland. 2010. Averting inflammation by targeting the cytokine environment. Nat. Rev. Drug Discov. 9:703-718. https://doi.org/10.1038/nrd2805
  33. Kopitar-Jerala, N. 2015. Innate immune response in brain, NF-kappa B signaling and cystatins. Front. Mol. Neurosci. 8: 216-220. https://doi.org/10.3389/fnmol.2015.00073
  34. Kris-Etherton, P.M., K.D. Hecker, A. Bonanome, S.M. Coval, A.E. Binkoski, K.F. Hilpert, A.E. Griel, T.D. Etherton. 2002. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113:71-88. https://doi.org/10.1016/S0002-9343(01)00995-0
  35. Kuan, Y.H., F.M. Huang, Y.C. Li and Y.C. Chang. 2012. Proinflammatory activation of macrophages by bisphenol Aglycidyl-methacrylate involved NF-κB activation via PI3K/Akt pathway. Food Chem. Toxicol. 50:4003-4009. https://doi.org/10.1016/j.fct.2012.08.019
  36. Kumar, H., T. Kawai and S. Akira. 2009. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 388:621-625. https://doi.org/10.1016/j.bbrc.2009.08.062
  37. Kurilich, A.C., G.J. Tsau, A. Brown, L. Howard, B.P. Klein, E.H. Jeffery and J.A. Juvik. 1999. Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J. Agric. Food Chem. 47:1576-1581. https://doi.org/10.1021/jf9810158
  38. Labonte, A.C., A.C. Tosello-Trampont and Y.S. Hahn. 2014. The role of macrophage polarization in infectious and inflammatory diseases. Mol. Cells 37:275-285. https://doi.org/10.14348/molcells.2014.2374
  39. Lee, H.J., K.C. Kim, J.A. Han, S.S. Choi and Y.J. Jung. 2015. The early induction of suppressor of cytokine signaling 1 and the downregulation of toll-like receptors 7 and 9 induce tolerance in costimulated Macrophages. Mol. Cells 38:26-32. https://doi.org/10.14348/molcells.2015.2136
  40. Lee, S.B., W.S. Lee, J.S. Shin, D.S. Jang, K.T. Lee. 2017. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int. Immunopharmacol. 49:21-29. https://doi.org/10.1016/j.intimp.2017.05.021
  41. Liu, X., J.H. Xie, S. Jia, L.X. Huang, Z.Y. Wang and C. Li. 2017. Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int. J. Biol. Macromol. 98:576-581. https://doi.org/10.1016/j.ijbiomac.2017.02.028
  42. Maruthanila, V.L., J. Poornima and S. Mirunalini. 2014. Attenuation of carcinogenesis and the mechanism underlying by the influence of indole-3-carbinol and its metabolite, 3'- diindolylmethane: A therapeutic marvel. Adv. Pharmacol. Sci. 2014:832161. https://doi.org/10.1155/2014/832161
  43. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135-145. https://doi.org/10.1038/35100529
  44. Nakamura, T., H. Suzuki, Y. Wada, T. Kodama and T. Doi. 2006 Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-κB-dependent signaling pathways through macrophage scavenger receptors. Biochem. Biophys. Res. Commun. 343:286-294. https://doi.org/10.1016/j.bbrc.2006.02.146
  45. Neugart, S., S. Baldermann, F.S. Hanschen, R. Klopsch, M. Wiesner-Reinhold and M. Schreiner. 2018. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 233:460-478. https://doi.org/10.1016/j.scienta.2017.12.038
  46. Nieminen, R., A. Lahti, U. Jalonen, H. Kankaanranta and E. Moilanen. 2006. JNK inhibitor SP600125 reduces COX-2 expression by attenuating mRNA in activated murine J774 macrophages. Int. Immunopharmacol. 6:987-996. https://doi.org/10.1016/j.intimp.2006.01.009
  47. O'Neill, L.A. 2006. How Toll-like receptors signal: What we know and what we don't know. Curr. Opin. Immunol. 18:3-9. https://doi.org/10.1016/j.coi.2005.11.012
  48. Ozes, O.N., L.D. Mayo, J.A. Gustin, S.R. Pfeffer, L.M. Pfeffer and D.B. Donner. 1999. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82-85. https://doi.org/10.1038/43466
  49. Ozinsky, A., D.M. Underhill, J.D. Fontenot. A.M. Hajjar, K.D. Smith, C.B. Wilso, L. Schroeder and A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. PNASU. 97:13766-13771. https://doi.org/10.1073/pnas.250476497
  50. Park, S.Y., G.Y. Park, W.S. Ko and Y. Kim. 2009. Dichroa febrifuga Lour. inhibits the production of IL-1beta and IL-6 through blocking NF-kappaB, MAPK and Akt activation in macrophages. J. Ethnopharmacol. 125:246-251. https://doi.org/10.1016/j.jep.2009.07.003
  51. Pearson, G., F. Robinson, T. Beers Gibson, B.E. Xu, M. Karandikar, K. Berman and M.H. Cobb. 2001. Mitogenactivated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22:153-183. https://doi.org/10.1210/er.22.2.153
  52. Pluddemann, A., S. Mukhopadhyay and S. Gordon. 2011. Innate immunity to intracellular pathogens: Macrophage receptors and responses to microbial entry. Immunol. Rev. 240:11-24. https://doi.org/10.1111/j.1600-065X.2010.00989.x
  53. Ren, D.Y., D.H. Lin, A. Alim, Q. Zheng and X.B. Yang. 2017. Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3K/Akt and NF-κB signaling pathways in RAW264.7 cells. Food Funct. 8:1299-1312. https://doi.org/10.1039/C6FO01699E
  54. Ren, H., J. Hao, T. Liu, D. Zhang, H. Lv, E. Song and C. Zhu. 2016. Hesperetin suppresses inflammatory responses in lipopolysaccharide-induced RAW264.7 cells via the inhibition of NF-κB and activation of Nrf2/HO-1 pathways. Inflammation 39:964-973.
  55. Sato, M., H. Sano, D. Iwaki, K. Kudo, M. Konishi, H. Takahashi, T. Takahashi, H. Imaizumi, Y. Asai and Y. Kuroki. 2003. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NFkappa B activation and TNF-alpha secretion are downregulated by lung collectin surfactant protein A. J. Immunol. 171:417-425. https://doi.org/10.4049/jimmunol.171.1.417
  56. Seo, H.J. and J.B. Jeong. 2020. Immune-enhancing effects of green lettuce (Lactuca sativa L.) extracts through the TLR4-MAPK/NF-κB signaling pathways in RAW264.7 macrophage cells. Korean J. Plant Res. 33:83-93.
  57. Shan, Y., R. Zhao, W. Geng, N. Lin, X. Wang, X. Du and S. Wang. 2010. Protective effect of sulforaphane on human vascular endothelial cells against lipopolysaccharide-induced inflammatory damage. Cardiovasc. Toxicol. 10:139-145. https://doi.org/10.1007/s12012-010-9072-0
  58. Shi, C. and E.G. Pamer. 2011. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11:762-774. https://doi.org/10.1038/nri3070
  59. Soengas, P., T. Sotelo, P. Velasco and M.E. Cartea. 2011. Antioxidant properties of Brassica vegetables. Funct. Plant Sci. Biotechnol. 5:43-55.
  60. Takeda, K. and S. Akira. 2005. Toll-like receptors in innate immunity. Int. Immunol. 17:1-14. https://doi.org/10.1093/intimm/dxh186
  61. Wieland, C.W., S. Knapp, S. Florquin, A.F. De Vos, K. Takeda, S. Akira, D.T. Golenbock, A. Verbon and T. Van Der Poll. 2004. Non-mannosecapped lipoarabinomannan induces lung inflammation via toll-like receptor 2. Am. J. Respir. Crit. Care Med. 170:1367-1374. https://doi.org/10.1164/rccm.200404-525OC
  62. Xi, L., C. Xiao and R.H.J. Bandsma. 2011. C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: role of mitogen-activated protein kinases. Hepatology 53:127-135. https://doi.org/10.1002/hep.24011
  63. Zhang, D., G. Zhang, M.S. Hayden, M.B. Greenblatt, C. Bussey, R.A. Flavel and S. Ghosh. 2004 A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522-1526. https://doi.org/10.1126/science.1094351
  64. Zheng, D.H., Y. Zhou, S.J. Cobbina, W. Wang, Q. Li and Y. Chen. 2017 Purification, characterization, and immunoregulatory activity of a polysaccharide isolated from Hibiscus sabdariffa L. J. Sci. Food Agric. 97:1599-1606. https://doi.org/10.1002/jsfa.7908
  65. Zou, Y.H., L. Zhao, Y.K. Xu, J.M. Bao, X. Liu, J.S. Zhang, W. Li, A. Ahmed, S. Yin and G.H. Tang. 2018. Anti-inflammatory sesquiterpenoids from the traditional chinese medicine Salvia plebeia: Regulates pro-inflammatory mediators through inhibition of NFkappaB and Erk1/2 signaling pathways in LPS-induced Raw264.7 cells. J. Ethnopharmacol. 210:95-106. https://doi.org/10.1016/j.jep.2017.08.034