DOI QR코드

DOI QR Code

Effect of mechanical alloying on the microstructural evolution of a ferritic ODS steel with (Y-Ti-Al-Zr) addition processed by Spark Plasma Sintering (SPS)

  • Macia, E. (Dpt. Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid (UC3M)) ;
  • Garcia-Junceda, A. (IMDEA Materials Institute) ;
  • Serrano, M. (Structural Materials Division, Technology Department, CIEMAT) ;
  • Hong, S.J. (Division of Advanced Material Engineering Kongju National Univerity) ;
  • Campos, M. (Dpt. Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid (UC3M))
  • 투고 : 2020.08.14
  • 심사 : 2021.02.01
  • 발행 : 2021.08.25

초록

The high-energy milling is one of the most extended techniques to produce Oxide dispersion strengthened (ODS) powder steels for nuclear applications. The consequences of the high energy mill process on the final powders can be measured by means of deformation level, size, morphology and alloying degree. In this work, an ODS ferritic steel, Fe-14Cr-5Al-3W-0.4Ti-0.25Y2O3-0.6Zr, was fabricated using two different mechanical alloying (MA) conditions (Mstd and Mact) and subsequently consolidated by Spark Plasma Sintering (SPS). Milling conditions were set to evidence the effectivity of milling by changing the revolutions per minute (rpm) and dwell milling time. Differences on the particle size distribution as well as on the stored plastic deformation were observed, determining the consolidation ability of the material and the achieved microstructure. Since recrystallization depends on the plastic deformation degree, the composition of each particle and the promoted oxide dispersion, a dual grain size distribution was attained after SPS consolidation. Mact showed the highest areas of ultrafine regions when the material is consolidated at 1100 ℃. Microhardness and small punch tests were used to evaluate the material under room temperature and up to 500 ℃. The produced materials have attained remarkable mechanical properties under high temperature conditions.

키워드

과제정보

Authors want to acknowledge Ferro-Ness project and Ferro-Genesys project funded by MINECO under National I + D + I program MAT2016-80875-C3-3-R and MAT2013-47460-C5-5-P. The authors gratefully acknowledge the help received from Daniel Plaza Lopez during the Small-Punch tests.

참고문헌

  1. S. Ukai, M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307-311 (2002) 749-757, https://doi.org/10.1016/S0022-3115(02)01043-7.
  2. N. Cunningham, Y. Wu, D. Klingensmith, G.R. Odette, On the remarkable thermal stability of nanostructured ferritic alloys, Mater. Sci. Eng. 613 (2014) 296-305, https://doi.org/10.1016/j.msea.2014.06.097.
  3. M.K. Miller, D.T. Hoelzer, E.a. Kenik, K.F. Russell, Stability of ferritic MA/ODS alloys at high temperatures, Intermetallics 13 (2005) 387-392, https://doi.org/10.1016/j.intermet.2004.07.036.
  4. K. Rajan, V.S. Sarma, T.R.G. Kutty, B.S. Murty, Hot hardness behaviour of ultrafine grained ferritic oxide dispersion strengthened alloys prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. 558 (2012) 492-496, https://doi.org/10.1016/j.msea.2012.08.033.
  5. C.-L. Chen, A. Richter, R. Kogler, G. Talut, Dual beam irradiation of nano-structured FeCrAl oxide dispersion strengthened steel, J. Nucl. Mater. 412 (2011) 350-358, https://doi.org/10.1016/j.jnucmat.2011.03.041.
  6. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents, J. Nucl. Mater. 329-333 (2004) 372-376, https://doi.org/10.1016/j.jnucmat.2004.04.043.
  7. S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda, T. Kobayashi, Development of 9crods martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation, J. Nucl. Sci. Technol. 39 (2002) 778-788, https://doi.org/10.1080/18811248.2002.9715260.
  8. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Nano-structure control in ODS martensitic steels by means of selecting titanium and oxygen contents, J. Phys. Chem. Solid. 66 (2005) 571-575, https://doi.org/10.1016/j.jpcs.2004.06.033.
  9. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T.F. Abe, Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems, J. Nucl. Mater. 417 (2011) 176-179, https://doi.org/10.1016/j.jnucmat.2010.12.300.
  10. P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition, J. Nucl. Mater. 444 (2014) 441-453, https://doi.org/10.1016/j.jnucmat.2013.10.028.
  11. R. Gao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum, J. Nucl. Mater. 444 (2014) 462-468, https://doi.org/10.1016/j.jnucmat.2013.10.038.
  12. J. Isselin, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Effects of Zr addition on the microstructure of 14%Cr4%Al ODS ferritic steels, Mater. Trans. 51 (2010) 1011-1015, https://doi.org/10.2320/matertrans.MBW200923.
  13. A. Garcia-Junceda, N. Garcia-Rodriguez, M. Campos, M. Carton-Cordero, J.M. Torralba, Effect of zirconium on the microstructure and mechanical properties of an Al-alloyed ODS steel consolidated by FAHP, J. Am. Ceram. Soc. 98 (2015) 3582-3587, https://doi.org/10.1111/jace.13691.
  14. W. Li, T. Hao, R. Gao, X. Wang, T. Zhang, Q. Fang, C. Liu, The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel, Powder Technol. 319 (2017) 172-182, https://doi.org/10.1016/J.POWTEC.2017.06.041.
  15. H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, A. Kimura, Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation, J. Nucl. Mater. 455 (2014) 349-353, https://doi.org/10.1016/j.jnucmat.2014.06.062.
  16. H. Xu, Z. Lu, D. Wanga, C. Liu, Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing, Fusion Eng. Des. 114 (2017) 33-39, https://doi.org/10.1016/J.FUSENGDES.2016.11.011.
  17. I. Hilger, F. Bergner, T. Weissgarber, Bimodal grain size distribution of nano-structured ferritic ODS Fe - Cr alloys, J. Am. Ceram. Soc. 3581 (2015) 3576-3581, https://doi.org/10.1111/jace.13833.
  18. J.M. Torralba, L. Fuentes-Pacheco, N. Garcia-Rodriguez, M. Campos, Development of high performance powder metallurgy steels by high-energy milling, Adv. Powder Technol. 24 (2013) 813-817, https://doi.org/10.1016/j.apt.2012.11.015.
  19. M. Nagini, R. Vijay, M. Ramakrishna, a.V. Reddy, G. Sundararajan, Influence of the duration of high energy ball milling on the microstructure and mechanical properties of a 9Cr oxide dispersion strengthened ferriticemartensitic steel, Mater. Sci. Eng. 620 (2015) 490-499, https://doi.org/10.1016/j.msea.2014.10.050.
  20. R. Xie, Z. Lu, C. Lu, C. Liu, Effects of mechanical alloying time on microstructure and properties of 9Cr-ODS steels, J. Nucl. Mater. 455 (2014) 554-560, https://doi.org/10.1016/J.JNUCMAT.2014.08.042.
  21. M.J. Alinger, G.R. Odette, D.T. Hoelzer, On the role of alloy composition and processing parameters in nanocluster, Fusion Mater. Semiannu. Prog. Rep. (2008) 53-78.
  22. A.G. Junceda, E. Macia, D. Garbiec, M. Serrano, J.M. Torralba, Effect of Small Variations in Zr Content on the Microstructure and Properties of Ferritic ODS Steels Consolidated by SPS, 2020, https://doi.org/10.3390/met10030348.
  23. J. Ren, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, Effects of Zr addition on strengthening mechanisms of Al-alloyed high-Cr ODS steels, Materials 11 (2018) 1-13, https://doi.org/10.3390/ma11010118.
  24. W.Z. Xu, L.L. Li, M. Saber, C.C. Koch, Y.T. Zhu, R.O. Scattergood, Nano ZrO2 particles in nanocrystalline Fe-14Cr-1.5Zr alloy powders, J. Nucl. Mater. 452 (2014) 434-439, https://doi.org/10.1016/j.jnucmat.2014.05.067.
  25. L. Zhang, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels, Mater. Sci. Eng. 695 (2017) 66-73, https://doi.org/10.1016/J.MSEA.2017.04.020.
  26. Z. Oksiuta, N. Baluc, Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel, J. Nucl. Mater. 386-388 (2009) 426-429, https://doi.org/10.1016/j.jnucmat.2008.12.148.
  27. Z. Oksiuta, P. Hosemann, S.C. Vogel, N. Baluc, Microstructure examination of Fe-14Cr ODS ferritic steels produced through different processing routes, J. Nucl. Mater. 451 (2014) 320-327, https://doi.org/10.1016/j.jnucmat.2014.04.004.
  28. M.A. Auger, V. De Castro, T. Leguey, A. Munoz, R. Pareja, Microstructure and mechanical behavior of ODS and non-ODS Fe-14Cr model alloys produced by spark plasma sintering, J. Nucl. Mater. 436 (2013) 68-75, https://doi.org/10.1016/j.jnucmat.2013.01.331.
  29. X. Boulnat, M. Perez, D. Fabregue, T. Douillard, M.H. Mathon, Y. De Carlan, Microstructure evolution in nano-reinforced ferritic steel processed by mechanical alloying and spark plasma sintering, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 1485-1497, https://doi.org/10.1007/s11661-013-2107-y.
  30. K.N. Allahar, J. Burns, B. Jaques, Y.Q. Wu, I. Charit, J. Cole, D.P. Butt, Ferritic oxide dispersion strengthened alloys by spark plasma sintering, J. Nucl. Mater. 443 (2013) 256-265, https://doi.org/10.1016/j.jnucmat.2013.07.019.
  31. Z. Li, Z. Lu, R. Xie, C. Lu, C. Liu, Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferritic steels, Mater. Sci. Eng. 660 (2016) 52-60, https://doi.org/10.1016/j.msea.2016.02.073.
  32. B.V. Ponraj, A. Dinesh Kumar, S. Kumaran, Rapid synthesis of oxide dispersion strengthened ferritic alloys through Spark plasma sintering, Mater. Today Proc. 27 (2019) 2661-2666, https://doi.org/10.1016/j.matpr.2019.11.094.
  33. I. Bogachev, E. Grigoryev, O.L. Khasanov, E. Olevsky, Fabrication of 13Cr-2Mo ferritic/martensitic oxide-dispersion-strengthened steel components by mechanical alloying and spark-plasma sintering, JOM (J. Occup. Med.) 66 (2014) 1020-1026, https://doi.org/10.1007/s11837-014-0972-5.
  34. X. Boulnat, D. Fabregue, M. Perez, M.H. Mathon, Y. De Carlan, High-temperature tensile properties of nano-oxide dispersion strengthened ferritic steels produced by mechanical alloying and spark plasma sintering, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 2461-2465, https://doi.org/10.1007/s11661-013-1719-6.
  35. N. Garcia-Rodriguez, M. Campos, J.M. Torralba, M.H. Berger, Y. Bienvenu, Capability of mechanical alloying and SPS technique to develop nanostructured high Cr, Al alloyed ODS steels, Mater. Sci. Technol. 30 (2014) 1676-1684, https://doi.org/10.1179/1743284714Y.0000000595.
  36. M. Serrano, M. Hernandez-Mayoral, A. Garcia-Junceda, Microstructural anisotropy effect on the mechanical properties of a 14Cr ODS steel, J. Nucl. Mater. 428 (2012) 103-109, https://doi.org/10.1016/j.jnucmat.2011.08.016.
  37. M. Serrano, A. Garcia-Junceda, R. Hernandez, M.H. Mayoral, On anisotropy of ferritic ODS alloys, Mater. Sci. Technol. 30 (2014) 1664-1668, https://doi.org/10.1179/1743284714Y.0000000552.
  38. E. Macia, A. Garcia-Junceda, M. Serrano, M. Hernandez-Mayoral, L.A. Diaz, M. Campos, Effect of the heating rate on the microstructure of a ferritic ODS steel with four oxide formers (Y-Ti-Al-Zr) consolidated by spark plasma sintering (SPS), J. Nucl. Mater. 518 (2019) 190-201, https://doi.org/10.1016/j.jnucmat.2019.02.043.
  39. F.A. Mohamed, Y. Xun, Correlations between the minimum grain size produced by milling and material parameters, Mater. Sci. Eng. 354 (2003) 133-139, https://doi.org/10.1016/S0921-5093(02)00936-X.
  40. H.J. Fecht, Nanoparticle formation by mechanical attrition, Nanostruct. Mater. 6 (1995) 33-42, https://doi.org/10.1016/0965-9773(95)00027-5.
  41. Y.H. Zhao, H.W. Sheng, K. Lu, Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition, Acta Mater. 49 (2001) 365-375, https://doi.org/10.1016/S1359-6454(00)00310-4.
  42. X. Zhou, Y. Liu, L. Yu, Z. Ma, Q. Guo, Y. Huang, H. Li, Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering, Mater. Des. 132 (2017) 158-169, https://doi.org/10.1016/j.matdes.2017.06.063.
  43. S. Diouf, A. Molinari, Densification mechanisms in spark plasma sintering: effect of particle size and pressure, Powder Technol. 221 (2012) 220-227, https://doi.org/10.1016/j.powtec.2012.01.005.
  44. N. Sallez, X. Boulnat, A. Borbely, J.L. Bechade, D. Fabregue, M. Perez, Y. De Carlan, L. Hennet, C. Mocuta, D. Thiaudiere, Y. Brechet, In situ characterization of microstructural instabilities: recovery , recrystallization and abnormal growth in nanoreinforced steel powder 87 (2015) 377-389, https://doi.org/10.1016/j.actamat.2014.11.051.
  45. M.A. Auger, V. de Castro, T. Leguey, M.A. Monge, A. Munoz, R. Pareja, Micro-structure and tensile properties of oxide dispersion strengthened Fe-14Cr-0.3Y2O3 and Fe-14Cr-2W-0.3Ti-0.3Y2O3, J. Nucl. Mater. 442 (2013) S142-S147, https://doi.org/10.1016/j.jnucmat.2012.11.001.
  46. M.J. Alinger, G.R. Odette, D.T. Hoelzer, On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys, Acta Mater. 57 (2009) 392-406, https://doi.org/10.1016/j.actamat.2008.09.025.
  47. P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness, Mater. Sci. Eng. 529 (2011) 62-73, https://doi.org/10.1016/j.msea.2011.08.061.
  48. A. Chauhan, F. Bergner, A. Etienne, J. Aktaa, Y. De Carlan, C. Heintze, D. Litvinov, M. Hernandez-Mayoral, E. Onorbe, B. Radiguet, A. Ulbricht, Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened ( ODS ) Fe-9 % Cr and Fe-14 % Cr extruded bars, J. Nucl. Mater. 495 (2017) 6-19, https://doi.org/10.1016/j.jnucmat.2017.07.060.
  49. M. Dade, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels, Acta Mater. 127 (2017) 165-177, https://doi.org/10.1016/j.actamat.2017.01.026.
  50. K. Guan, L. Hua, Q. Wang, X. Zou, M. Song, Assessment of toughness in long term service CrMo low alloy steel by fracture toughness and small punch test, Nucl. Eng. Des. 241 (2011) 1407-1413, https://doi.org/10.1016/j.nucengdes.2011.01.031.
  51. I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, A. Ulbricht, Fabrication and characterization of oxide dispersion strengthened (ODS) 14Cr steels consolidated by means of hot isostatic pressing, hot extrusion and spark plasma sintering, J. Nucl. Mater. 472 (2015) 206-214, https://doi.org/10.1016/j.jnucmat.2015.09.036.
  52. N. Sallez, C. Hatzoglou, F. Delabrouille, D. Sornin, L. Chaffron, M. Blat-Yrieix, B. Radiguet, P. Pareige, P. Donnadieu, Y. Brechet, Precipitates and boundaries interaction in ferritic ODS steels, J. Nucl. Mater. 472 (2016) 118-126, https://doi.org/10.1016/j.jnucmat.2016.01.021.
  53. X. Boulnat, N. Sallez, M. Dade, A. Borbely, J. Bechade, Y. De Carlan, J. Malaplate, Y. Brechet, F. de Geuser, A. Deschamps, P. Donnadieu, D. Fabregue, M. Perez, Influence of oxide volume fraction on abnormal growth of nanostructured ferritic steels during non-isothermal treatments: an in situ study, Acta Mater. 97 (2015) 124-130, https://doi.org/10.1016/j.actamat.2015.07.005.
  54. M. Dade, J. Malaplate, J. Garnier, F. De Geuser, N. Lochet, A. Deschamps, Influence of consolidation methods on the recrystallization kinetics of a Fe-14Cr based ODS steel, J. Nucl. Mater. 472 (2016) 143-152, https://doi.org/10.1016/j.jnucmat.2016.01.019.

피인용 문헌

  1. Optimization of milling speed and time in mechanical alloying of ferritic ODS steel through taguchi technique vol.12, 2021, https://doi.org/10.1051/smdo/2021029
  2. Characterization of Al2O3 Samples and NiAl-Al2O3 Composite Consolidated by Pulse Plasma Sintering vol.14, pp.12, 2021, https://doi.org/10.3390/ma14123398