DOI QR코드

DOI QR Code

A study of predicting irradiation-induced transition temperature shift for RPV steels with XGBoost modeling

  • Received : 2020.09.28
  • Accepted : 2021.02.19
  • Published : 2021.08.25

Abstract

The prediction of irradiation-induced transition temperature shift for RPV steels is an important method for long term operation of nuclear power plant. Based on the irradiation embrittlement data, an irradiation-induced transition temperature shift prediction model is developed with machine learning method XGBoost. Then the residual, standard deviation and predicted value vs. measured value analysis are conducted to analyze the accuracy of this model. At last, Cu content threshold and saturation values analysis, temperature dependence, Ni/Cu dependence and flux effect are given to verify the reliability. Those results show that the prediction model developed with XGBoost has high accuracy for predicting the irradiation embrittlement trend of RPV steel. The prediction results are consistent with the current understanding of RPV embrittlement mechanism.

Keywords

Acknowledgement

This research is supported by the National Key Research and Development Program of China (grant No. 2017YFB0702204) and Guangdong Major Project of Basic and Applied Basic Research (grant No. 2019B030302011) and the National Natural Science Foundation of China (grant No. 12075274).

References

  1. 99 l Regulatory Guide, Radiation Embrittlement of Reactor Vessel Materials (Revision 2), Nuclear Regulation Commission, USA, 1988.
  2. Improved Embrittlement Correlations for Reactor Pressure Vessel Steels, NUREG/CR-6551, Nuclear Regulatory Commission, USA, 1998.
  3. ASTM E 900-02, Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, 2007.
  4. RCC-M, Design and Construction Rules for Mechanical Components of PWR Nuclear Ialands, AFCEN, France, 1993.
  5. RSE-M (Addendum 2005), In-Service Inspection Rules for the Mechanical Components of PWR Nuclear Islands, AFCEN, France, 2005.
  6. Nuclear Reactor Pressure Vessel Structural Material Surveillance Test Method, JEAC 4201, JEAC, Japan, 1991.
  7. G.A. Cottrell, R. Kemp, H.K.D.H. Bhadeshia, et al., J. Nucl. Mater. 367-370 (2007) 603-609. https://doi.org/10.1016/j.jnucmat.2007.03.103
  8. R. Kemp, G.A. Cottrell, H.K.D.H. Bhadeshia, et al., J. Nucl. Mater. 348 (2006) 311-328. https://doi.org/10.1016/j.jnucmat.2005.09.022
  9. J. Mathew, D. Parfitt, K. Wilford, et al., J. Nucl. Mater. 502 (2018) 311-322. https://doi.org/10.1016/j.jnucmat.2018.02.027
  10. N. Castin, L. Malerba, R. Chaouadi, J. Nucl. Mater. 408 (2011) 30-39. https://doi.org/10.1016/j.jnucmat.2010.10.039
  11. T. Chen, T. He, M. Benesty, Xgboost: Extreme Gradient Boosting, 2015, pp. 1-4. R Package Version 0.4-2.
  12. E.D. Eason, G.R. Odette, R.K. Nanstad, T. Yamamoto, J. Nucl. Mater. 433 (2013) 240-254. https://doi.org/10.1016/j.jnucmat.2012.09.012
  13. Mark Kirk, Cayetano Santos, Ernest Eason, Joyce Wright, G. Robert Odette. Updated embrittlement trend curve for reactor pressure vessel steels[C]//Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17) Prague, Czech Republic, August 17-22, 2003.
  14. G.R. Odette, G.E. Lucas, Irradiation embrittlement of reactor pressure vessel steels: mechanisms, models, and data correlation, in: Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: an International Review (Second Volume), ASTM STP 909, 1986, pp. 206-241.
  15. R.B. Jones, T.J. Williams, The dependence of radiation hardening and embrittlement on irradiation temperature, in: Effects of Radiation on Materials: 17th International Symposium, ASTM STP 1270, 1996, pp. 569-590.
  16. F.M. Haggag, Effects of irradiation temperature on embrittlement of nuclear pressure vessel steels, in: Effects of Radiation on Materials: Sixteenth International Symposium. ASTM STP 1175, 1994, pp. 172-185.
  17. L. Debarberis, B. Acosta, A. Zeman, et al., Scripta Mater. 53 (2005) 769-773. https://doi.org/10.1016/j.scriptamat.2005.05.026
  18. D.R. Harries, Annual Report on Underlying Research at Harwell, vol. 15, 1983.
  19. A. Ballesteros, R. Ahlstrand, C. Bruynooghe, et al., Prog. Nucl. Energy 53 (2011) 756-759. https://doi.org/10.1016/j.pnucene.2011.05.022
  20. G.R. Odette, T. Yamamoto, D. Klingensmith, On the effect of dose rate on irradiation hardening of RPV steels, Phil. Mag. 85 (2005) 779-797. https://doi.org/10.1080/14786430412331319910

Cited by

  1. An Efficient Prediction System for Diabetes Disease Based on Deep Neural Network vol.2021, 2021, https://doi.org/10.1155/2021/6053824
  2. Application of machine learning in understanding the irradiation damage mechanism of high-entropy materials vol.559, 2022, https://doi.org/10.1016/j.jnucmat.2021.153462