DOI QR코드

DOI QR Code

Enhanced mechanical properties and interface structure characterization of W-La2O3 alloy designed by an innovative combustion-based approach

  • Chen, Pengqi (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Xu, Xian (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Wei, Bangzheng (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Chen, Jiayu (AECC Commercial Aircraft Engine Co, LTD.) ;
  • Qin, Yongqiang (Research Centre for Powder Metallurgy Engineering and Technology of Anhui Province) ;
  • Cheng, Jigui (School of Materials Science and Engineering, Hefei University of Technology)
  • Received : 2020.07.20
  • Accepted : 2020.11.01
  • Published : 2021.05.25

Abstract

Oxide dispersion strengthening (ODS) tungsten alloys are highly desirable in irradiation applications. However, how to improve the properties of ODS-tungsten alloys efficiently has been worth studying for a long time. Here we report a nanostructuring approach that achieves W-La2O3 alloy with a high level of flexural strength and Vickers hardness at room temperature, which have the maximum value of 581 MPa and 703 Hv, respectively. This method named solution combustion synthesis (SCS) can generate 30 nm coating structures W-La2O3 composite powders by using Keggin-type structural polyoxometalates as raw materials in a fast and low-cost process. The composite powder can be fabricated to W-La2O3 alloy with an optimal microstructure of submicrometric W grains coexisting with nanometric oxide particles in the grain interior, and a stability interface structure of grain boundaries (GBs) by forming transition zones. The method can be used to prepare new ODS alloys with excellent properties in the future.

Keywords

Acknowledgement

This work was financially supported by the Natural Science Foundation of Anhui (JZ2018AKZR0063), the program of the National Natural Science Foundation of China (51674095), the National Key Research and Development Program of China (JZ2019ZDYF0111) and the Fundamental Research Funds for the Central Universities (PA2019GDPK0044).

References

  1. X. Ding, Q. Xu, X. Zhu, L. Luo, J. Huang, B. Yu, X. Gao, J. Li, Y. Cheng, Micro-structure evolution and effect on deuterium retention in oxide dispersion strengthened tungsten during He+ irradiation, Nucl. Eng. Technol. 52 (12) (2020) 2860-2866. https://doi.org/10.1016/j.net.2020.05.022
  2. M. Xia, Q. Yan, L. Xu, H. Guo, L. Zhu, C. Ge, Bulk tungsten with uniformly dispersed La2O3 nano-particles sintered from co-precipitated La2O3/W nanoparticles, J. Nucl. Mater. 434 (2013) 85-89. https://doi.org/10.1016/j.jnucmat.2012.11.017
  3. A. Sestan, P. Jenus, S.N. Krmpotic, J. Zavasnik, M. Ceh, The role of tungsten phases formation during tungsten metal powder consolidation by FAST: implications for high-temperature applications, Mater. Char. 138 (2018) 308-314. https://doi.org/10.1016/j.matchar.2018.02.022
  4. Z.M. Xie, R. Liu, S. Miao, X.D. Yang, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, Y.Y. Lian, X. Liu, Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature, Sci. Rep. 5 (2015) 16014. https://doi.org/10.1038/srep16014
  5. H. Kurishita, H. Arakawa, S. Matsuo, T. Sakamoto, S. Kobayashi, K. Nakai, G. Pintsuk, J. Linke, S. Tsurekawa, V. Yardley, K. Tokunaga, T. Takida, M. Katoh, A. Ikegaya, Y. Ueda, M. Kawai, N. Yoshida, Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement, Mater. Trans. 54 (2013) 456-465. https://doi.org/10.2320/matertrans.MG201209
  6. W. Chrominski, L. Ciupinski, P. Bazarnik, S. Markelj, T. Schwarz-Selingerc, TEM investigation of the influence of dose rate on radiation damage and deuterium retention in tungsten, Mater. Char. 154 (2019) 1-6. https://doi.org/10.1016/j.matchar.2019.05.028
  7. J. Hu, Y. Shi, X. Sauvage, G. Sha, K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science 355 (2017) 1292-1296. https://doi.org/10.1126/science.aal5166
  8. L. Huang, L. Jiang, T.D. Topping, C. Dai, X. Wang, R. Carpenter, C. Haines, J.M. Schoenung, In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure, Acta Mater. 122 (2017) 219-31. https://doi.org/10.1016/j.actamat.2016.09.034
  9. S. Wahlberg, M.A. Yar, M.O. Abuelnaga, H.G. Salem, M. Johnsson, M. Muhammed, Synthesis, Densification and characterization of ultra-fine W-Al2O3 composite powder, Mater. Char. 142 (2018) 245-251. https://doi.org/10.1016/j.matchar.2018.05.045
  10. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater. 12 (2013) 344-350. https://doi.org/10.1038/nmat3544
  11. M. Huang, M. Qin, P. Chen, B. Jia, Z. Chen, R. Li, Z. Liu, X. Qu, Facile preparation of network-like porous hematite (α-Fe2O3) nanosheets via a novel combustion-based route, Ceram. Int. 42 (2016) 10380-10388.
  12. H. Wu, M. Qin, X. Li, Z. Cao, B. Jia, Z. Zhang, D. Zhang, X. Qu, A.A. Volinsky, One step synthesis of vanadium pentoxide sheets as cathodes for lithium ion batteries, Electrochim. Acta 206 (2016) 301-306. https://doi.org/10.1016/j.electacta.2016.04.169
  13. P. Chen, M. Qin, Z. Chen, B. Jia, S. Zhao, Q. Wan, X. Qu, A novel approach to synthesize the amorphous carbon-coated WO3 with defects and excellent photocatalytic properties, Mater. Des. 6 (2016) 83101-83109.
  14. Y. Zhang, A.V. Ganeev, J.T. Wang, J.Q. Liu, I.V. Alexandrov, Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity, Mater. Sci. Eng. 503 (2009) 37-40. https://doi.org/10.1016/j.msea.2008.07.074
  15. P. Chen, M. Qin, D. Zhang, Z. Chen, B. Jia, Q. Wan, H. Wu, X. Qu, Combustion synthesis and excellent photocatalytic degradation properties of W18O49, CrystEngComm 17 (2015) 5889-5894. https://doi.org/10.1039/C5CE00995B
  16. R. Liu, Z.M. Xie, Q.F. Fang, T. Zhang, X.P. Wang, T. Hao, C.S. Liu, Y. Dai, Nano-structured yttria dispersion-strengthened tungsten synthesized by sol-egel method, J. Alloys Compd. 657 (2016) 73-80. https://doi.org/10.1016/j.jallcom.2015.10.059
  17. C. Yong, W. Yucheng, Y. Fuwen, C. Junling, Study on structure and property of tungsten alloy strengthened with dispersed La2O3, Rare Met. Mater. Eng. 36 (2007) 822-824. https://doi.org/10.3321/j.issn:1002-185X.2007.05.016
  18. B. Li, Z. Sun, G. Hou, F. Ding, P. Hu, F. Yuan, The sintering behavior of quasi-spherical tungsten nanopowders, Int. J. Refract. Metals Hard Mater. 56 (2016) 44-50. https://doi.org/10.1016/j.ijrmhm.2015.10.007
  19. S. Wang, J. Zhang, L.-M. Luo, X. Zan, Q. Xu, X.-Y. Zhu, K. Tokunaga, Y.-C. Wu, Properties of Lu2O2 doped tungsten and thermal shock performance, Powder Technol. 301 (2016) 65-69. https://doi.org/10.1016/j.powtec.2016.05.056
  20. Q. Yan, X. Zhang, T. Wang, C. Yang, C. Ge, Effect of hot working process on the mechanical properties of tungsten materials, J. Nucl. Mater. 442 (2013) S233-S236. https://doi.org/10.1016/j.jnucmat.2013.01.307
  21. J.L. Fan, Z. Qiang, H. Yong, L. Tao, S.Z. Yang, Influence of La2O3 on sintering performance of ultrafine W composite powders and micro-structure of W alloy, Mater. Sci. Eng. Powder Met. 19 (2014) 439-445.
  22. M. Zhao, Z. Zhou, Q. Ding, M. Zhong, K. Arshad, Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys, Int. J. Refract. Metals Hard Mater. 48 (2015) 19-23. https://doi.org/10.1016/j.ijrmhm.2014.07.014
  23. M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, M. Muhammed, Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization, J. Nucl. Mater. 412 (2011) 227-232. https://doi.org/10.1016/j.jnucmat.2011.03.007
  24. C.-X. Zhang, Y.-G. Chen, Z.-C. Zhang, D.-D. Liu, H.-X. Meng, Synthesis and properties of two new 3D organic-inorganic hybrid compounds constructed from Keggin clusters, pyridine-2, 3-dicarboxylate and Ag (I) ions, Solid State Sci. 14 (2012) 1289-1294. https://doi.org/10.1016/j.solidstatesciences.2012.07.018
  25. B.-Z. Lin, Y.-M. Chen, P.-D. Liu, A new polymeric chain formed by paradodecatungstate clusters and [Cu(en)2]2+ complexes: hydrothermal synthesis and characterization of [Cu(en)2]3[{Cu(en)2}2(H2W12O42)].12H2O, Dalton Trans. (2003) 2474-2477.
  26. H. Pang, Y. Chen, F. Meng, D. Shi, Assembly of three novel 2D frameworks with helical chains based on [H2W12O40]6- clusters and lanthanide-Organic complexes, Inorg. Chim. Acta. 361 (2008) 2508-2514. https://doi.org/10.1016/j.ica.2008.01.010
  27. R. Liu, Y. Zhou, T. Hao, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten, J. Nucl. Mater. 424 (2012) 171-175. https://doi.org/10.1016/j.jnucmat.2012.03.008
  28. Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu, Preparation of ultra-fine grain W-Y2O3 alloy by an improved wet chemical method and two-step spark plasma sintering, J. Alloys Compd. 695 (2017) 2969-2973. https://doi.org/10.1016/j.jallcom.2016.11.364
  29. C. Wei, Q.Q. Ren, J.L. Fan, H.R. Gong, Cohesion properties of W/La2O3 interfaces from first principles calculation, J. Nucl. Mater. 466 (2015) 234-238. https://doi.org/10.1016/j.jnucmat.2015.08.013
  30. Y. Li, Y. Gao, B. Xiao, T. Min, S. Ma, D. Yi, Theoretical calculations on the adhesion, stability, electronic structure, and bonding of Fe/WC interface, Appl. Surf. Sci. 257 (2011) 5671-5678. https://doi.org/10.1016/j.apsusc.2011.01.072
  31. W. Zhang, J. Smith, A. Evans, The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3, Acta Mater. 50 (2002) 3803-3816. https://doi.org/10.1016/S1359-6454(02)00177-5
  32. Y. Jiang, J.R. Smith, A.G. Evans, First principles assessment of metal/oxide interface adhesion, Appl. Phys. Lett. 92 (2008) 141918. https://doi.org/10.1063/1.2907339
  33. G. Han, Z.J. Xie, Z.Y. Li, B. Lei, C.J. Shang, R.D.K. Misra, Evolution of crystal structure of Cu precipitates in a low carbon steel, Mater. Des. 135 (2017) 92-101. https://doi.org/10.1016/j.matdes.2017.08.054

Cited by

  1. Synthesis of nano Y2O3, TiO2, ZrO2 dispersed W-Ni-Nb-Mo alloys by mechanical alloying vol.103, 2021, https://doi.org/10.1016/j.ijrmhm.2021.105753