DOI QR코드

DOI QR Code

Uncertainty quantification and propagation with probability boxes

  • Duran-Vinuesa, L. (Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros Industriales) ;
  • Cuervo, D. (Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros Navales)
  • Received : 2020.10.05
  • Accepted : 2021.02.07
  • Published : 2021.08.25

Abstract

In the last decade, the best estimate plus uncertainty methodologies in nuclear technology and nuclear power plant design have become a trending topic in the nuclear field. Since BEPU was allowed for licensing purposes by the most important regulator bodies, different uncertainty assessment methods have become popular, overall non-parametric methods. While non-parametric tolerance regions can be well stated and used in uncertainty quantification for licensing purposes, the propagation of the uncertainty through different codes (multi-scale, multiphysics) in cascade needs a better depiction of uncertainty than the one provided by the tolerance regions or a probability distribution. An alternative method based on the parametric or distributional probability boxes is used to perform uncertainty quantification and propagation regarding statistic uncertainty from one code to another. This method is sample-size independent and allows well-defined tolerance intervals for uncertainty quantification, manageable for uncertainty propagation. This work characterizes the distributional p-boxes behavior on uncertainty quantification and uncertainty propagation through nested random sampling.

Keywords

Acknowledgement

The authors would like to express their gratitude to the Programa Propio of the Universidad Politecnica de Madrid, without its founding, this research could not had been possible.

References

  1. USNRC, "10 CFR Part 50 - Domestic Licensing of Production and Utilization Facilities." .
  2. Safety Assessment and Verification for Nuclear Power Plants: Safety Guide, IAEA, Vienna, 2001.
  3. Regulatory Guide 1.157 (Task RS 701-4), Best-Estimate Calculations of Emergency Core Cooling System Performance.," p. 20.
  4. B. Boyack, et al., Quantifying Reactor Safety Margins: Application of Code Scaling, Applicability, and Uncertainty Evaluation Methodology to a LargeBreak, Loss-Of-Coolant-Accident, NRC NUREG-Series Publications/CR-5249, 1989 iv.
  5. F. D'Auria, C. Camargo, O. Mazzantini, The Best Estimate Plus Uncertainty (BEPU) approach in licensing of current nuclear reactors, Nucl. Eng. Des. 248 (2012) 317-328, https://doi.org/10.1016/j.nucengdes.2012.04.002.
  6. F. D'Auria, O. Mazzantini, The best-estimate plus uncertainty (BEPU) challenge in the licensing of current generation of reactors, in: Proceedings Of an International Conference On Opportunities And Challenges For Water Cooled Reactors In the 21st Century, Vienna, Austria, 27-30 October 2009, Vienna, 2011, p. 13 [Online]. Available: http://www-pub.iaea.org/MTCD/Publications/PDF/P1500_CD_Web/htm/pdf/topic4/4S08_F.%20D. Auria.
  7. N.R.C. US, Regulatory Guide 1.70, standard Format and content of safety analysis reports for nuclear power plants - LWR edition, Rev 3 (" Dec. 1978).
  8. N.R.C. US, Regulatory Guide 1.203, Trans. Acc. Anal. Methods (2005) 53.
  9. F. D'Auria, N. Debrecin, H. Glaeser, Strengthening nuclear reactor safety and analysis, Nucl. Eng. Des. 324 (Dec. 2017) 209-219, https://doi.org/10.1016/j.nucengdes.2017.09.008.
  10. F. D'Auria, N. Debrecin, H. Glaeser, The technological challenge for current generation nuclear reactors, NUCET 5 (3) (Sep. 2019) 183-199, https://doi.org/10.3897/nucet.5.38117.
  11. IAEA, Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation, Internat Atomic Energy Agency, Vienna, 2008.
  12. L.L. Briggs, Nuclear Engineering Division, "Uncertainty Quantification Approaches for Advanced Reactor Analyses, Argonne National Lab. (ANL), Argonne, IL (United States), 2009, https://doi.org/10.2172/956921.
  13. C. Frepoli, J.P. Yurko, R.H. Szilard, C.L. Smith, R. Youngblood, H. Zhang, 10 CFR 50.46c rulemaking: a novel approach in restating the LOCA problem for PWRs, Nucl. Technol. 196 (2) (Nov. 2016) 187-197, https://doi.org/10.13182/NT16-66.
  14. X. Wu, T. Kozlowski, H. Meidani, K. Shirvan, Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory, Nucl. Eng. Des. 335 (Aug. 2018) 339-355, https://doi.org/10.1016/j.nucengdes.2018.06.004.
  15. S. Wilks, Determination of sample sizes for setting tolerance limits, Ann. Math. Stat. 12 (1) (1941) 91-96, https://doi.org/10.1214/aoms/1177731788.
  16. S. Wilks, Statistical prediction with special reference to the problem of tolerance limits, Ann. Math. Stat. 13 (4) (1945) 400-409, https://doi.org/10.1214/aoms/1177731537.
  17. Alan D. Hutson, Calculating nonparametric confidence intervals for quantiles using fractional order statistics, J. Appl. Stat. 26 (3) (1999) 343-353, https://doi.org/10.1080/02664769922458.
  18. R. Beran, P. Hall, Interpolated nonparametric prediction intervals and confidence intervals, J. Roy. Stat. Soc. B 55 (3) (1993) 643-652, https://doi.org/10.1111/j.2517-6161.1993.tb01929.x.
  19. E. Zio, F. Di Maio, Bootstrap and order statistics for quantifying thermalhydraulic code uncertainties in the estimation of safety margins, Sci. Technol. Nucl. Instal. 2008 (2008) 1-9, https://doi.org/10.1155/2008/340164.
  20. F. Sanchez-Saez, A. Sanchez, J. Villanueva, S. Carlos, S. Martorell, Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods 174, Reliability Engineering & System Safety, Jun. 2018, pp. 19-28, https://doi.org/10.1016/j.ress.2018.02.005.
  21. S. Ferson, V. Kreinovick, L. Ginzburg, F. Sentz, Constructing Probability Boxes and Dempster-Shafer Structures, SNL Report, 2003, p. 809606, https://doi.org/10.2172/809606. SAND2002-4015.
  22. I.S. Hong, A. Connolly, Generalized tolerance limit evaluation method to determine statistically meaningful minimum code simulations, in: Volume 4: Structural Integrity; Next Generation Systems; Safety And Security; Low Level Waste Management And Decommissioning; Near Term Deployment: Plant Designs, Licensing, Construction, Workforce and Public Acceptance, Orlando, Florida, USA, Jan, 2008, pp. 653-660, https://doi.org/10.1115/ICONE16-48448.
  23. J. Hou, et al., BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELLING (UAM) FOR DESIGN, OPERATION AND SAFETY ANALYSIS OF LWRs, in: Specification and Support Data for the Core Cases (Phase II), 3 Vols, vol. 2, OECD Nuclear Energy Agency, 2019.
  24. G.J. Hahn, W.Q. Meeker, L.A. Escobar, Statistical Intervals: A Guide for Practitioners and Researchers, John Wiley & Sons, 2017.
  25. R. Mendizabal, Contribucion al estudio de las metodologias de calculo realista con incertidumbre (BEPU), dentro del analisis determinista de seguridad de plantas nucleares, " Universidad Politecnica de Madrid, Madrid, 2016.
  26. US NRC, "Regulatory Guide 1.105, Set-points for safety related instrumentation. Rev. 3".
  27. S. Bi, M. Broggi, P. Wei, M. Beer, The Bhattacharyya distance: enriching the Pbox in stochastic sensitivity analysis, Mech. Syst. Signal Process. 129 (Aug. 2019) 265-281, https://doi.org/10.1016/j.ymssp.2019.04.035.
  28. L.L. Sharon, in: Sampling: Design and Analysis, second ed., Brooks/Cole, 2009.
  29. D. Grabaskas, R. Denning, T. Aldemir, M. Nakayama, The use of Latin Hypercube sampling for the efficient estimation of confidence intervals, in: International Congress on Advances In Nuclear Power Plants 2012, ICAPP 2012 vol. 2, 2012.
  30. C. Baudrit, D. Dubois, Practical representations of incomplete probabilistic knowledge, Comput. Stat. Data Anal. 51 (1) (Nov. 2006) 86-108, https://doi.org/10.1016/j.csda.2006.02.009.
  31. V. Voinov, N. Balakrishnan, M.S. Nikulin, Chi-squared Goodness of Fit Tests with Applications, Elsevier/AP, Amsterdam, 2013.
  32. AndersoneDarling Test, in the Concise Encyclopedia Of Statistics, Springer New York, New York, NY, 2008, pp. 12-14.
  33. Kolmogorov-Smirnov Test, in the Concise Encyclopedia Of Statistics, Springer New York, New York, NY, 2008, pp. 283-287.
  34. R.F. Engle, Chapter 13 Wald, likelihood ratio, and Lagrange multiplier tests in econometrics, in: In Handbook Of Econometrics, vol. 2, 1984, pp. 775-826.
  35. Y. Pawitan, A reminder of the fallibility of the Wald statistic: likelihood explanation, Am. Statistician 54 (1) (2000) 54-56, https://doi.org/10.1080/00031305.2000.10474509.
  36. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Stat. 9 (1) (1938) 60-62, https://doi.org/10.1214/aoms/1177732360.
  37. C.E. Bonferroni, Teoria statistica delle classi e calcolo delle probabilita, 1936.
  38. B. Efron, R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci. 1 (1) (Feb. 1986) 54-75, https://doi.org/10.1214/ss/1177013815.
  39. T.G. Bali, The generalized extreme value distribution, Econ. Lett. 79 (3) (Jun. 2003) 423-427, https://doi.org/10.1016/S0165-1765(03)00035-1.
  40. R. Schobi, B. Sudret, Propagation of uncertainties modelled by parametric P-boxes using sparse polynomial Chaos expansions, in: In 12th Int. Conf. On Applications Of Statistics And Probability In Civil Engineering (ICASP12), Canada, Vancouver, 2015, p. 9 [Online]. Available: https://hal.archives-ouvertes.fr/hal01247151.
  41. C.F. Wu, M. Hamada, Experiments: Planning, Analysis, and Parameter Design Optimization, Wiley, New York, 2000.
  42. M.H. Kutner (Ed.), Applied Linear Statistical Models, fifth ed., McGraw-Hill Irwin, Boston, 2005.
  43. E. Zugazagoitia, C. Queral, K. Fernandez-Cosials, J. Gomez, L. Duran-Vinuesa, J. Sanchez-Torrijos, J.M. Posada, Uncertainty and sensitivity analysis of a PWR LOCA sequence using parametric and non-parametric methods, Reliab. Eng. Syst. Saf. 193 (2020), https://doi.org/10.1016/j.ress.2019.106607.