DOI QR코드

DOI QR Code

An electrochemical hydrogen peroxide sensor for applications in nuclear industry

  • Park, Junghwan (Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute) ;
  • Kim, Jong Woo (Engineering Development Research Center, Seoul National University) ;
  • Kim, Hyunjin (College of Pharmacy, Seoul National University) ;
  • Yoon, Wonhyuck (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.05.07
  • Accepted : 2020.06.27
  • Published : 2021.01.25

Abstract

Hydrogen peroxide is a radiolysis product of water formed under gamma-irradiation; therefore, its reliable detection is crucial in the nuclear industry for spent fuel management and coolant chemistry. This study proposes an electrochemical sensor for hydrogen peroxide detection. Cysteamine (CYST), gold nanoparticles (GNPs), and horseradish peroxidase (HRP) were used in the modification of a gold electrode for fabricating Au/CYST/GNP/HRP sensor. Each modification step of the electrode was investigated through electrochemical and physical methods. The sensor exhibited strong sensitivity and stability for the detection and measurement of hydrogen peroxide with a linear range of 1-9 mM. In addition, the Michaelis-Menten kinetic equation was applied to predict the reaction curve, and a quantitative method to define the dynamic range is suggested. The sensor is highly sensitive to H2O2 and can be applied as an electrochemical H2O2-sensor in the nuclear industry.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by Korean government (Ministry of Science and ICT) (Grant No. 2017M2A8A5014754).

References

  1. H. Christensen, Remodeling of the oxidant species during radiolysis of high-temperature water in a pressurized water reactor, Nucl. Technol. 109 (1995) 373-382, https://doi.org/10.13182/NT95-A35086.
  2. B. Pastina, J.A. LaVerne, Effect of molecular hydrogen on hydrogen peroxide in water radiolysis, J. Phys. Chem. 105 (2001) 9316-9322, https://doi.org/10.1021/jp012245j.
  3. H. Takiguchi, M. Ullberg, S. Uchida, Optimization of dissolved hydrogen concentration for control of primary coolant radiolysis in pressurized water reactors, J. Nucl. Sci. Technol. 41 (2004) 601-609, https://doi.org/10.1080/18811248.2004.9715523.
  4. J.C. Wren, Steady-state radiolysis: effects of dissolved additives, in: Nucl. Energy Environ., American Chemical Society, 2010, pp. 22-271, https://doi.org/10.1021/bk-2010-1046.ch022.
  5. Y. Kumagai, A. Kimura, M. Taguchi, R. Nagaishi, I. Yamagishi, T. Kimura, Hydrogen production in gamma radiolysis of the mixture of mordenite and seawater, J. Nucl. Sci. Technol. 50 (2013) 130-138, https://doi.org/10.1080/00223131.2013.757453.
  6. K. Hata, H. Inoue, T. Kojima, A. Iwase, S. Kasahara, S. Hanawa, F. Ueno, T. Tsukada, Hydrogen peroxide production by gamma radiolysis of sodium chloride solutions containing a small amount of bromide ion, Nucl. Technol. 193 (2016) 434-443, https://doi.org/10.13182/NT15-32.
  7. A. Rufus, V. Sathyaseelan, M. Srinivasan, P.S. Kumar, S. Veena, S. Velmurugan, S. Narasimhan, Chemistry aspects pertaining to the application of steam generator chemical cleaning formulation based on ethylene diamine tetra acetic acid, Prog. Nucl. Energy 39 (2001) 285-303, https://doi.org/10.1016/S0149-1970(01)00004-X.
  8. H. Kawamura, K. Fujiwara, H. Kanbe, H. Hirano, H. Takiguchi, K. Yoshino, S. Yamamoto, T. Shibata, K. Ishigure, Applicability of chemical cleaning process to steam generator secondary side, (III), J. Nucl. Sci. Technol. 43 (2006) 655-668, https://doi.org/10.1080/18811248.2006.9711145.
  9. M. Suzuki, E. Oohashi, Cleaning the secondary side of steam generators of Tomari Power Station Unit 1/2 using ASCA and UEC technology, E-Journal Adv. Maint. 4 (2012) 7. http://inis.iaea.org/search/search.aspx?orig_q=RN:44084602.
  10. S. Uchida, Y. Katsumura, Water chemistry technology - one of the key technologies for safe and reliable nuclear power plant operation, J. Nucl. Sci. Technol. 50 (2013) 346-362, https://doi.org/10.1080/00223131.2013.773171.
  11. J.W. Kormuth, The control of cobalt-58 dissolution during refueling shutdowns of pressurized water reactors using a hydrogen peroxide addition, Nucl. Technol. 37 (1978) 99-102, https://doi.org/10.13182/NT78-A31976.
  12. I. Betova, M. Bojinov, T. Saario, Start-up and shut-down water chemistries in pressurized water reactors, VTT Res. Rep. (2012) 1-81. VTT-R-00699-12, http://www.vtt.fi/inf/julkaisut/muut/2012/VTT-R-00699-12.pdf.
  13. J.P. Simpson, P.H. Valloton, Experiments on Container Materials for Swiss High-Level Waste Disposal Projects Part II, Nagra NTB, 1984, pp. 1-84.
  14. W.H. Yunker, R.S. Glass, Long-term corrosion behavior of copper-base materials in a gamma-irradiated environment, MRS Proc. 84 (1986) 579, https://doi.org/10.1557/PROC-84-579.
  15. F. King, C.D. Litke, The Corrosion of Copper in Synthetic Groundwater at 150 C-Part I. The Results of Short-Term Electrochemical Tests, 1987.
  16. J. Kass, Evaluation of copper, aluminum bronze, and copper-nickel container material for the Yucca mountain project, Canada. http://inis.iaea.org/search/search.aspx?orig_q=RN:23004457, 1990.
  17. C. Corbel, V. Wasselin-Trupin, B. Hickel, D. Feron, M. Roy, F. Maurel, Effect of irradiation on long term alteration of oxides and metals in aqueous solutions. https://inis.iaea.org/search/search.aspx?orig_q=RN:35038877, 2003 (accessed April 10, 2020).
  18. A. Bjorkbacka, S. Hosseinpour, C. Leygraf, M. Jonsson, Radiation induced corrosion of copper in anoxic aqueous solution, Electrochem. Solid State Lett. 15 (2012), https://doi.org/10.1149/2.022205esl.
  19. A. Bjorkbacka, S. Hosseinpour, M. Johnson, C. Leygraf, M. Jonsson, Radiation induced corrosion of copper for spent nuclear fuel storage, Radiat. Phys. Chem. 92 (2013) 80-86, https://doi.org/10.1016/J.RADPHYSCHEM.2013.06.033.
  20. G. Sattonnay, C. Ardois, C. Corbel, J.F. Lucchini, M.-F. Barthe, F. Garrido, D. Gosset, Alpha-radiolysis effects on UO2 alteration in water, J. Nucl. Mater. 288 (2001) 11-19, https://doi.org/10.1016/S0022-3115(00)00714-5.
  21. E. Ekeroth, M. Jonsson, Oxidation of UO2 by radiolytic oxidants, J. Nucl. Mater. 322 (2003) 242-248, https://doi.org/10.1016/J.JNUCMAT.2003.07.001.
  22. E. Ekeroth, O. Roth, M. Jonsson, The relative impact of radiolysis products in radiation induced oxidative dissolution of UO2, J. Nucl. Mater. 355 (2006) 38-46, https://doi.org/10.1016/J.JNUCMAT.2006.04.001.
  23. C.R. Raj, T. Okajima, T. Ohsaka, Gold nanoparticle arrays for the voltammetric sensing of dopamine, J. Electroanal. Chem. 543 (2003) 127-133, https://doi.org/10.1016/S0022-0728(02)01481-X.
  24. A.N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications, ChemPhysChem 1 (2000) 18-52, https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L.
  25. T. Sagara, N. Kato, N. Nakashima, Electroreflectance study of gold nano-particles immobilized on an aminoalkanethiol monolayer coated on a polycrystalline gold electrode surface, J. Phys. Chem. B 106 (2002) 1205-1212, https://doi.org/10.1021/jp011807w.
  26. J. Wang, Y. Lin, L. Chen, Organic-phase biosensors for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products, Analyst 118 (1993) 277-280, https://doi.org/10.1039/AN9931800277.
  27. M. Shamsipur, M. Asgari, M.G. Maragheh, A.A. Moosavi-Movahedi, A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase, Bioelectrochemistry 83 (2012) 31-37, https://doi.org/10.1016/J.BIOELECHEM.2011.08.003.
  28. P.D. Sanchez, P.T. Blanco, J.M.F. Alvarez, M.R. Smyth, R. O'Kennedy, Flow-injection analysis of hydrogen peroxide using a horseradish peroxidase-modified electrode detection system, Electroanalysis 2 (1990) 303-308, https://doi.org/10.1002/elan.1140020407.
  29. U. Wollenberger, J. Wang, M. Ozsoz, E. Gonzalez-Romero, F. Scheller, Bulk modified enzyme electrodes for reagentless detection of peroxides, Bioelectrochem. Bioenerg. 26 (1991) 287-296, https://doi.org/10.1016/0302-4598(91)80030-7.
  30. A. Morales, F. Cespedes, J. Munoz, E. Martinez-Fabregas, S. Alegret, Hydrogen peroxide amperometric biosensor based on a peroxidase-graphite-epoxy biocomposite, Anal. Chim. Acta 332 (1996) 131-138, https://doi.org/10.1016/0003-2670(96)82793-0.
  31. Y. Xiao, H.-X.X. Ju, H.-Y.Y. Chen, Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer, Anal. Chim. Acta 391 (1999) 73-82, https://doi.org/10.1016/S0003-2670(99)00196-8.
  32. S.-Q. Liu, H.-X. Ju, Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode, Anal. Biochem. 307 (2002) 110-116, https://doi.org/10.1016/S0003-2697(02)00014-3.
  33. H. Yin, S. Ai, W. Shi, L. Zhu, A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase, Sensor. Actuator. B Chem. 137 (2009) 747-753, https://doi.org/10.1016/J.SNB.2008.12.046.
  34. X. Yi, J. Huang-Xian, C. Hong-Yuan, Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode, Anal. Biochem. 278 (2000) 22-28, https://doi.org/10.1006/ABIO.1999.4360.
  35. L. Menten, M.I. Michaelis, Die kinetik der invertinwirkung, Biochem. Z. 49 (1913) 5.
  36. H. Lineweaver, D. Burk, The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56 (1934) 658-666. https://doi.org/10.1021/ja01318a036
  37. K.R. Brown, D.G. Walter, M.J. Natan, Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape, Chem. Mater. 12 (2000) 306-313, https://doi.org/10.1021/cm980065p.
  38. S. Bharathi, M. Nogami, S. Ikeda, Layer by layer self-assembly of thin films of metal hexacyanoferrate multilayers, Langmuir 17 (2001) 7468-7471, https://doi.org/10.1021/la011053c.
  39. B. Neiman, E. Grushka, O. Lev, Use of gold nanoparticles to enhance capillary electrophoresis, Anal. Chem. 73 (2001) 5220-5227, https://doi.org/10.1021/ac0104375.
  40. X. Hua, H.L. Xia, Y.T. Long, Revisiting a classical redox process on a gold electrode by operando ToF-SIMS: where does the gold go? Chem. Sci. 10 (2019) 6215-6219, https://doi.org/10.1039/c9sc00956f.
  41. J. Zhao, R.W. Henkens, J. Stonehuerner, J.P. O'Daly, A.L. Crumbliss, Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes, J. Electroanal. Chem. 327 (1992) 109-119, https://doi.org/10.1016/0022-0728(92)80140-Y.
  42. X. Li, J. Wu, N. Gao, G. Shen, R. Yu, Electrochemical performance of l-cysteine-goldparticle nanocomposite electrode interface as applied to preparation of mediator-free enzymatic biosensors, Sensor. Actuator. B Chem. 117 (2006) 35-42, https://doi.org/10.1016/j.snb.2005.10.044.
  43. S.H. Jung, J.W. Yeon, K. Song, Effect of pH, temperature, and H2O2 on the electrochemical oxidation behavior of iron in perchlorate solutions, J. Solid State Electrochem. 18 (2014) 333-339, https://doi.org/10.1007/s10008-013-2357-z.
  44. D.C. Harris, Quantitative Chemical Analysis, seventh ed., W.H. Freeman, New York, 2007.
  45. J.W. Mandler, A.C. Stalker, S.T. Croney, D.W. Akers, N.K. Bihl, L.S. Loret, T.E. Young, In-plant Source Term Measurements at Prairie Island Nuclear Generating Station, US Nuclear Regulatory Commission, United States, 1985.
  46. M.G. Garguilo, Nhan Huynh, A. Proctor, A.C. Michael, Amperometric sensors for peroxide, choline, and acetylcholine based on electron transfer between horseradish peroxidase and a redox polymer, Anal. Chem. 65 (1993) 523-528, https://doi.org/10.1021/ac00053a007.
  47. J. Li, S.N. Tan, H. Ge, Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide, Anal. Chim. Acta 335 (1996) 137-145, https://doi.org/10.1016/S0003-2670(96)00337-6.
  48. A.L. Lehninger, D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, fourth ed., W. H. Freeman, New York, 2005.
  49. F. Wu, Z. Hu, J. Xu, Y. Tian, L. Wang, Y. Xian, L. Jin, Immobilization of horseradish peroxidase on self-assembled (3-mercaptopropyl)trimethoxysilane film: characterization, direct electrochemistry, redox thermodynamics and biosensing, Electrochim. Acta 53 (2008) 8238-8244, https://doi.org/10.1016/J.ELECTACTA.2008.06.031.
  50. R.A. Kamin, G.S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Anal. Chem. 52 (1980) 1198-1205, https://doi.org/10.1021/ac50058a010.

Cited by

  1. Colorimetric detection of hydrogen peroxide with gadolinium complex of phenylboronic acid functionalized 4,5-diazafluorene vol.522, 2021, https://doi.org/10.1016/j.ica.2021.120386