DOI QR코드

DOI QR Code

A novel radioactive particle tracking algorithm based on deep rectifier neural network

  • Received : 2020.08.18
  • Accepted : 2021.01.04
  • Published : 2021.07.25

Abstract

Radioactive particle tracking (RPT) is a minimally invasive nuclear technique that tracks a radioactive particle inside a volume of interest by means of a mathematical location algorithm. During the past decades, many algorithms have been developed including ones based on artificial intelligence techniques. In this study, RPT technique is applied in a simulated test section that employs a simplified mixer filled with concrete, six scintillator detectors and a137Cs radioactive particle emitting gamma rays of 662 keV. The test section was developed using MCNPX code, which is a mathematical code based on Monte Carlo simulation, and 3516 different radioactive particle positions (x,y,z) were simulated. Novelty of this paper is the use of a location algorithm based on a deep learning model, more specifically a 6-layers deep rectifier neural network (DRNN), in which hyperparameters were defined using a Bayesian optimization method. DRNN is a type of deep feedforward neural network that substitutes the usual sigmoid based activation functions, traditionally used in vanilla Multilayer Perceptron Networks, for rectified activation functions. Results show the great accuracy of the DRNN in a RPT tracking system. Root mean squared error for x, y and coordinates of the radioactive particle is, respectively, 0.03064, 0.02523 and 0.07653.

Keywords

Acknowledgement

The authors gratefully acknowledge scholarships from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001, and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - Brasil (CNPq). Thanks also to Instituto de Engenharia Nuclear (IEN).

References

  1. M.S. Abouelwafa, S.M. Kendall, The measurement of component ratios in multiphase systems using gamma-ray attenuation, J. Phys. E Sci. Instrum. 13 (1980) 341-345. https://doi.org/10.1088/0022-3735/13/3/022
  2. Y. Mi, M. Ishii, L.H. Tsoukalas, Vertical two-phase flow identification using advanced instrumentation and neural networks, Nucl. Eng. Des. 184 (1998) 409-420. https://doi.org/10.1016/S0029-5493(98)00212-X
  3. R. Hanus, L. Petryka, M. Zych, Velocity measurement the liquid-solid flow in vertical pipeline using gamma-ray absorption and weighted cross-correlation, Flow Meas. Instrum. 40 (2014) 58-63. https://doi.org/10.1016/j.flowmeasinst.2014.08.007
  4. R. Hanus, M. Zych, M. Kusy, M. Jaszczur, L. Petryka, Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods, Flow Meas. Instrum. 60 (2018) 17-23. https://doi.org/10.1016/j.flowmeasinst.2018.02.008
  5. G.H. Roshani, E. Nazemi, M.M. Roshani, A novel method for flow pattern identification in unstable operational conditions using gamma ray and radial basis function, Appl. Radiat. Isot. 123 (2017) 60-68. https://doi.org/10.1016/j.apradiso.2017.02.023
  6. M. Zych, R. Hanus, B. Wilk, L. Petryka, D. Swisulski, Comparison of noise reduction methods in radiometric correlation measurements of two-phase liquid-gas flows, Measurement 129 (2018) 288-295, https://doi.org/10.1016/j.measurement.2018.07.035.
  7. V. Mosorov, M. Zych, R. Hanus, D. Sankowski, A. Saoud, Improvement of flow velocity measurement algorithms based on correlation function and twin plane electrical capacitance tomography, Sensors 20 (2020) 306, https://doi.org/10.3390/s20010306.
  8. R. Hanus, M. Zych, R. Chorzepa, A. Golijanek-Jedrzejczyk, Investigations of the methods of time delay measurement of stochastic signals using crosscorrelation with the hilbert transform, in: IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, vol. 2020, 2020, pp. 238-242, https://doi.org/10.1109/MELECON48756.2020.9140630.
  9. M. Khorsandi, S.A. Feghhi, Design and construction of a prototype gamma-ray densitometer for petroleum products monitoring applications, Measurement 44 (2011) 1512-1515. https://doi.org/10.1016/j.measurement.2011.06.001
  10. W.L. Salgado, R.S.F. Dam, C.M. Barbosa, A.X. Silva, C.M. Salgado, Monitoring system of oil by-products interface in pipelines using the gamma radiation attenuation, Appl. Radiat. Isot. 160 (2020), https://doi.org/10.1016/j.apradiso.2020.109125.
  11. A.A. Abdulrahman, E.M. Shokir, Artificial neural networks modeling for hydrocarbon gas viscosity and density estimation, J. King Saud Univ. - Eng. Sci. 23 (2011) 123-129. https://doi.org/10.1016/j.jksues.2011.03.004
  12. C.M. Salgado, L.E.B. Brandao, C.C. Conti, W.L. Salgado, Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks, Appl. Radiat. Isot. 116 (2016) 143-149. https://doi.org/10.1016/j.apradiso.2016.08.001
  13. G.H. Roshani, R. Hanus, A. Khazaei, M. Zych, E. Nazemi, V. Mosorov, Density and velocity determination for single-phase flow based on radiotracer technique and neural networks, Flow Meas. Instrum. 61 (2018) 9-14. https://doi.org/10.1016/j.flowmeasinst.2018.03.006
  14. J.S. Lin, M.M. Chen, B.T. Chao, A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds, AIChE J. 31 (3) (1985) 465-473. https://doi.org/10.1002/aic.690310314
  15. F. Larachi, G. Kennedy, J. Chaouki, A gamma-ray detection system for 3-D particle tracking in multiphase reactors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 338 (2-3) (1994) 568-576. https://doi.org/10.1016/0168-9002(94)91343-9
  16. L. Godfroy F. Larachi, G. Kennedy, B. Grandjean, J. Chaouki, On-line flow visualization in multiphase reactors using neural networks, Appl. Radiat. Isot. 48 (1997) 225-235. https://doi.org/10.1016/S0969-8043(96)00183-2
  17. S. Bhusarapu, M.H. Al-Dahhan, M.P. Dudukovic, S. Trujillo, T.J. O'Hern, Experimental study of the solids velocity field in gasesolid risers, Ind. Eng. Chem. Res. 44 (25) (2005) 9739. https://doi.org/10.1021/ie050297f
  18. N. Devanathan, D. Moslemian, M.P. Dudukovic, Flow mapping in bubble columns using CARPT, Chem. Eng. Sci. 45 (1990) 2285-2291. https://doi.org/10.1016/0009-2509(90)80107-P
  19. S. Azizi, A. Yadav, Y.M. Lau, U. Hampel, S. Roy, M. Schubert, On the experimental investigation of gas-liquid flow in bubble columns using ultrafast Xray tomography and radioactive particle tracking, Chem. Eng. Sci. 170 (2017) 320-331, https://doi.org/10.1016/j.ces.2017.02.015.
  20. M.A.S.M. Yunos, M.D.A. Usang, H. Ithnin, S.A. Hussain, H.M. Yusoff, S. Sipaun, Reconstruction algorithm of calibration map for RPT techniques in quadrilateral bubble column reactor using MCNPX code, European Journal of Engineering Research and Science 3 (1) (2018).
  21. M.A.S.M. Yunos, S.A. Hussain, S.M. Sipaun, Industrial radiotracer application in flow rate measurement and flowmeter calibration using 99mTc and 198Au nanoparticles radioisotope, Appl. Radiat. Isot. 143 (2019) 24-28. https://doi.org/10.1016/j.apradiso.2018.10.008
  22. A. Yadav, T.K. Gaurav, H.J. Pant, S. Roy, Machine Learning Based Position-rendering Algorithms for Radioactive Particle Tracking Experimentation, American Institute of Chemical Engineers, 2020, https://doi.org/10.1002/aic.16954.
  23. L. Spreutels, B. Haut, R. Legros, F. Bertrand, J. Chaouki, Experimental investigation of solid particles flow in a conical spouted bed using radioactive particle tracking, AIChE J. 62 (2015) 26-37. https://doi.org/10.1002/aic.15014
  24. R.S.F. Dam, T.P. Teixeira, W.L. Salgado, C.M. Salgado, A new application of radioactive particle tracking using MCNPX code and artificial neural network, Appl. Radiat. Isot. 149 (2019) 38-47. https://doi.org/10.1016/j.apradiso.2019.04.011
  25. R.S.F. Dam, C.M. Barbosa, J.M. Lopes, J.L. Thalhofer, L.B. Silva, C.M. Salgado, A.X. Silva, Radioactive particle tracking methodology to evaluate concrete mixer using MCNPX code, Radiat. Phys. Chem. 160 (2019) 26-29. https://doi.org/10.1016/j.radphyschem.2019.03.027
  26. J. Chaouki, F. Larachi, P. Dudukovic, Non-Invasive Monitoring of Multiphase Flows, Elsevier Science B.V., Amsterdam, The Netherlands, 1997.
  27. V. Blet, P. Berne, S. Legoupil, et al., Radioactive tracing as aid for diagnosing chemical reactors, Oil and Gas Science and Technology - Rev. IFP. 55 (2) (2000) 171-183. https://doi.org/10.2516/ogst:2000010
  28. J. Doucet, F. Bertrand, J. Chaouki, An extended radioactive particle tracking method for systems with irregular moving boundaries, Powder Technol. 181 (2) (2008) 195-204. https://doi.org/10.1016/j.powtec.2006.12.019
  29. V. Mosorov, J. Abdullah, MCNP5 code in radioactive particle tracking, Appl. Radiat. Isot. 69 (2011) 1287-1293. https://doi.org/10.1016/j.apradiso.2011.04.028
  30. C.M. Salgado, L.E.B. Brandao, C.M.N.A. Pereira, R. Schirru, R. Ramos, A.X. Silva, Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network, Appl. Radiat. Isot. 67 (2009) 1812-1818. https://doi.org/10.1016/j.apradiso.2009.02.093
  31. C.M. Salgado, C.M.N.A. Pereira, R. Schirru, L.E.B. Brandao, Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks, Prog. Nucl. Energy 52 (6) (2010) 555-562. https://doi.org/10.1016/j.pnucene.2010.02.001
  32. G.H. Roshani, A. Karami, A. Salehizadeh, E. Nazemi, The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water, Appl. Radiat. Isot. 129 (2017) 156-162. https://doi.org/10.1016/j.apradiso.2017.08.027
  33. R.R.W. Affonso, R.S.F. Dam, W.L. Salgado, A.X. Silva, C.M. Salgado, Flow regime and volume fraction identification using nuclear techniques, artificial neural networks and computational fluid dynamics, Appl. Radiat. Isot. 159 (2020) 109103, https://doi.org/10.1016/j.apradiso.2020.109103.
  34. C.M. Salgado, R.S.F. Dam, W.L. Salgado, R.R.W. Affonso, C.M.N.A. Pereira, R. Schirru, The comparison of different multilayer perceptron and General Regression Neural Networks for volume fraction prediction using MCNPX code, Appl. Radiat. Isot. 162 (2020), https://doi.org/10.1016/j.apradiso.2020.109170.
  35. W.L. Salgado, R.S.F. Dam, T.P. Teixeira, C.C. Conti, C.M. Salgado, Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer, Radiat. Phys. Chem. 168 (2020) 108549, https://doi.org/10.1016/j.radphyschem.2019.108549.
  36. G.H. Roshani, E. Nazemi, Intelligent densitometry of petroleum products in stratified regime of two phase flows using gamma ray and neural network, Flow Meas. Instrum. 58 (2017) 6-11. https://doi.org/10.1016/j.flowmeasinst.2017.09.007
  37. C.M.N.A. Pereira, R. Schirru, K.J. Gomes, J.L. Cunha, Artificial Neural Networks for Radiation Dose Prediction in Nuclear Emergencies: Preliminary Investigations. Advances in Computer Science Research, Atlantis Press ISSN, 2016, https://doi.org/10.2991/msota-16.2016.98, 2352-538X.
  38. R.K. Srivastava, K. Greff, J. Schmidhuber, Training Very Deep Networks. The Swiss AI Lab IDSIA/USI/SUPSI, Neural Information Processing Systems, NIPS), 2015.
  39. M. Gheisari, G. Wang, M.Z.A. Bhuiyan, A survey on deep learning in big data, in: IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing, EUC), Guangzhou, 2017, pp. 173-180.
  40. F. Chen, M.R. Jahanshahi, NB-CNN, Deep learning-based crack detection using convolutional neural network and naive bayes data fusion, in: IEEE Transactions on Industrial Electronics, vol. 65, 2018, pp. 4392-4400, https://doi.org/10.1109/TIE.2017.2764844, 5.
  41. F.D.S. Ribeiro, F. Caliva, D. Chionis, A. Dokhane, A. Mylonakis, C. Demaziere, G. Leontidis, S.D. Kollias, Towards a deep unified framework for nuclear reactor perturbation analysis, in: IEEE Symposium Series on Computational Intelligence, SSCI), Bangalore, India, 2018, pp. 120-127, https://doi.org/10.1109/SSCI.2018.8628637.
  42. F. Caliva, F.D.S. Ribeiro, A. Mylonakis, C. Demaziere, P. Vinai, G. Leontidis, S. Kollias, A deep learning approach to anomaly detection in nuclear reactors, in: International Joint Conference on Neural Networks, IJCNN), Rio de Janeiro, 2018, pp. 1-8, https://doi.org/10.1109/IJCNN.2018.8489130.
  43. F.S.M. Desterro, M.C. Santos, K.J. Gomes, A. Heimlich, R. Schirru, C.M.N.A. Pereira, Development of a Deep Rectifier Neural Network for dose prediction in nuclear emergencies with radioactive material releases, Prog. Nucl. Energy 118 (2020), https://doi.org/10.1016/j.pnucene.2019.103110.
  44. M.C. Santos, V.H.C. Pinheiro, F.S.M. Desterro, R.K. Avellar, R. Schirru, A.S. Nicolau, A.M.M. Lima, Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant, Ann. Nucl. Energy 133 (2019) 400-408. https://doi.org/10.1016/j.anucene.2019.05.039
  45. V.H. Pinheiro, M.C. Santos, F.S.M. Desterro, R. Schirru, C.M.N.A. Pereira, Nuclear Power Plant accident identification system with "don't know" response capability: novel deep learning-based approaches, Ann. Nucl. Energy 137 (2020), https://doi.org/10.1016/j.anucene.2019.107111.
  46. X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks. Proceedings of the fourteenth international conference on artificial intelligence and statistics, in: PMLR, vol. 15, 2011, pp. 315-323.
  47. D.B. Pelowitz, MCNPX TM User's Manual. Version 2.5.0, Los Alamos National Laboratory, 2005. LA-CP-05-0369.
  48. S. Haykin, Neural Networks, A Comprehensive Foundation, second ed., Prentice Hall, 1999.
  49. J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. Off. J. Int. Neural Netw. Soc. 61 (2015) 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
  50. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436-444. https://doi.org/10.1038/nature14539
  51. B.B. Benuwa, Y.Z. Zhan, B. Ghansah, D.K. Wornyo, F.B. Kataka, A review of deep machine learning, Int. J. Eng. Res. Afr. 24 (2016) 124-136. https://doi.org/10.4028/www.scientific.net/JERA.24.124.
  52. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proc. AISTATS, vol. 9, 2010, pp. 249-256.
  53. D. Pedamonti, Comparison of Non-linear Activation Functions for Deep Neural Networks on MNIST Classification Task, CoRR - Computing Research Repository, 2018.
  54. R.J. McConn Jr., C.J. Gesh, R.A. Rucker, R.G. Williams II, Compendium of Material Composition Data for Radiation Transport Modeling, Pacific Northwest National Laboratory, 2011. PNNL-15870, Rev. 1.
  55. M.J. Berger, S.M. Seltzer, Response functions for sodium iodide scintillation detectors, Nucl. Instrum. Methods 104 (1972) 317-332. https://doi.org/10.1016/0029-554X(72)90543-5
  56. C.M. Salgado, L.E.B. Brandao, R. Schirru, C.M.N.A. Pereira, C.C. Conti, Validation of aNaI(Tl) detector's model developed with MCNP-X code, Prog. Nucl. Energy 59 (2012) 19-25. https://doi.org/10.1016/j.pnucene.2012.03.006
  57. J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (2012) 281-305.
  58. J.M. Ortiz-Rodriguez, M.R. Martinez-Blanco, J.M. Varamontes, H.R. Vega-Carrillo, Robust design of artificial neural networks methodology in neutron spectrometry, in: K. Prof Suzuki (Ed.), Artificial Neural Networks - Architectures and Application, s, 2013.
  59. J. Snoek, H. Larochelle, R. Adams, Practical Bayesian optimization of machine learning algorithms, in: Advances in Neural Information Processing Systems, vol. 25, 2012, pp. 2960-2968.
  60. I. Dewancker, M. McCourt, S. Clark, Bayesian Optimization for Machine Learning: A Practical Guidebook, SigOpt, San Francisco, CA 94108, 2015 arXiv: 1612.04858.
  61. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. Freitas, Taking the human out of the loop: a review of bayesian optimization, in: Proceedings of the IEEE, vol. 104, 2016, pp. 148-175, 1. https://doi.org/10.1109/JPROC.2015.2494218
  62. M. Pumperla, Hyperas: a Very Simple Convenience Wrapper Around Hyperopt for Fast Prototyping with Keras Models, 2017. https://maxpumperla.com/hyperas/. (Accessed 1 June 2020).
  63. D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), ICLR, 2015 arXiv:1511.07289.
  64. D.P. Kingma, J. Ba, Adam, A method for stochastic optimization, in: 3rd International Conference for Learning Representations, San Diego, 2015 arXiv:1412.6980.

Cited by

  1. Application of radioactive particle tracking and an artificial neural network to calculating the flow rate in a two-phase (oil–water) stratified flow regime vol.180, 2021, https://doi.org/10.1016/j.apradiso.2021.110061
  2. Transfer learning for radioactive particle tracking vol.248, pp.no.pb, 2021, https://doi.org/10.1016/j.ces.2021.117190