DOI QR코드

DOI QR Code

Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation

  • Kim, Minho (Medical Accelerator Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Hong, Bong Hwan (Medical Accelerator Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Cho, Ilsung (Medical Accelerator Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Chawon (Medical Accelerator Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Min, Sun-Hong (Medical Accelerator Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Hwang, Won Taek (Medical Accelerator Research Team, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Wonho (School of Health and Environmental Science, Korea University) ;
  • Kim, Kyeong Min (Medical Accelerator Research Team, Korea Institute of Radiological and Medical Sciences)
  • 투고 : 2020.03.03
  • 심사 : 2020.07.09
  • 발행 : 2021.02.25

초록

Boron-neutron capture therapy (BNCT) is a cancer treatment method that exploits the high neutron reactivity of boron. Monitoring the prompt gamma rays (PGs) produced during neutron irradiation is essential for ensuring the accuracy and safety of BNCT. We investigate the imaging of PGs produced by the boron-neutron capture reaction through Monte Carlo simulations of a gamma camera with a SrI2 scintillator and parallel-hole collimator. GAGG scintillator is also used for a comparison. The simulations allow the shapes of the energy spectra, which exhibit a peak at 478 keV, to be determined along with the PG images from a boron-water phantom. It is found that increasing the size of the water phantom results in a greater number of image counts and lower contrast. Additionally, a higher septal penetration ratio results in poorer image quality, and a SrI2 scintillator results in higher image contrast. Thus, we can simulate the BNCT process and obtain an energy spectrum with a reasonable shape, as well as suitable PG images. Both GAGG and SrI2 crystals are suitable for PG imaging during BNCT. However, for higher imaging quality, SrI2 and a collimator with a lower septal penetration ratio should be utilized.

키워드

과제정보

This study was supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by the Ministry of Science and ICT (MIST), Republic of Korea. (No. 50532-2020).

참고문헌

  1. R.L. Moss, Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT), Appl. Radiat. Isot. 88 (2014) 2-11. https://doi.org/10.1016/j.apradiso.2013.11.109
  2. L. Kankaanranta, T. Seppala, H. Koivunoro, K. Saarilahti, T. Atula, J. Collan, E. Salli, M. Kortesniemi, J. Uusi-simola, P. Valimaaki, A. Makitie, M. Seppanen, H. Minn, H. Revitzer, M. Kouri, P. Kotiluoto, T. Seren, I. Auterinen, S. Savolainen, H. Joensuu, Boron neutron capture therapy in the treatment of locally recurred head and neck cancer: final analysis of a phase I/II trial, Int. J. Radiat. Oncol. Biol. Phys. 82 (2012) e67-e75. https://doi.org/10.1016/j.ijrobp.2010.09.057
  3. R.F. Barth, M.G.H. Vicente, O.K. Harling, W.S. Kiger III, K.J. Riley, P.J. Binns, F.M. Wagner, M. Suzuki, T. Aihara, I. Kato, S. Kawabata, Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer, Radiat. Oncol. 7 (2012) 146-167. https://doi.org/10.1186/1748-717X-7-146
  4. S. Savolainen, M. Kortesniemi, M. Timonen, V. Reijonen, L. Kuusela, J. Uusi-Simola, E. Salli, H. Koivunoro, T. Seppala, N. Lonnroth, P. Valimaki, H. Hyvonen, P. Kotiluoto, T. Seren, A. Kuronen, S. Heikkinen, A. Kosunen, I. Auterinen, Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences, Phys. Med. 29 (2013) 233-248. https://doi.org/10.1016/j.ejmp.2012.04.008
  5. T. Kobayashi, Y. Sakurai, M. Ishikawa, A noninvasive dose estimation system for clinical BNCT based on PG-SPECT-Conceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors, Med. Phys. 27 (2000) 2124-2132. https://doi.org/10.1118/1.1288243
  6. R. Seki, Y. Wakisaka, N. Morimoto, M. Takashina, M. Koizumi, H. Toki, M. Fukuda, Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT), Radiol. Phys. Technol. 10 (2017) 387-408. https://doi.org/10.1007/s12194-017-0430-5
  7. M. Manabe, F. Sato, I. Murata, Basic detection property of an array-type CdTe detector for BNCT-SEPCT - measurement and analysis of anti-coincidence events, Appl. Radiat. Isot. 118 (2016) 389-394. https://doi.org/10.1016/j.apradiso.2015.11.003
  8. B. Hales, T. Katabuchi, N. Hayashizaki, K. Terada, M. Igashira, T. Kobayashi, Feasibility study of SPECT system for online dosimetry imaging in boron neutron capture therapy, Appl. Radiat. Isot. 88 (2014) 167-170. https://doi.org/10.1016/j.apradiso.2013.11.135
  9. I. Murata, T. Mukai, S. Nakamura, H. Miyamaru, I. Kato, Development of a thick CdTe detector for BNCT-SPECT, Appl. Radiat. Isot. 69 (2011) 1706-1709. https://doi.org/10.1016/j.apradiso.2011.05.014
  10. P.M. Rosenschold, D. Minarik, C. Ostlund, M. Ljungberg, C. Ceberg, Prompt gamma tomography during BNCT-A feasibility study, J. Instrum. 1 (2006) p05003.
  11. A. Winkler, H. Koivunoro, S. Savolainen, Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy, Appl. Radiat. Isot. 124 (2017) 114-118. https://doi.org/10.1016/j.apradiso.2017.03.018
  12. I. Murata, T. Mukai, M. Ito, H. Miyamaru, S. Yoshida, Feasibility study on BNCTSPECT using a CdTe detector, J. Nucl. Sci. Technol. 1 (2011) 267-270.
  13. W.L. Duvall, L.B. Croft, E.S. Ginsberg, A.J. Einstein, K.A. Guma, T. George, M.J. Henzlova, Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera, J. Nucl. Cardiol. 18 (2011) 847-857. https://doi.org/10.1007/s12350-011-9379-7
  14. S. Fatemi, S. Altieri, S. Bortolussi, I. Postuma, G. Benassi, N. Zambelli, M. Bettelli, M. Zanichelli, A. Zappettini, N. Protti, Preliminary characterization of a CdZnTe photon detector for BNCT-SPECT, Nucl. Instrum. Methods A 903 (2018) 134-139. https://doi.org/10.1016/j.nima.2018.06.068
  15. D.M. Minsky, A.A. Valda, A.J. Kreiner, S. Green, C. Wojnecki, Z. Ghani, First tomographic image of neutron capture rate in a BNCT facility, Appl. Radiat. Isot. 69 (2011) 1858-1861. https://doi.org/10.1016/j.apradiso.2011.01.030
  16. N.J. Cherepy, P.R. Beck, S.A. Payne, E.L. Swanberg, B.M. Wihl, S.E. Fisher, S. Hunter, P.A. Thelin, C.J. Delzer, S. Shahbazi, A. Burger, K.S. Shah, R. Hawrami, L.A. Boatner, M. Momayezi, K. Stevens, M.H. Randles, D. Solodovnikov, History and current status of strontium iodide scintillators, Proc. SPIE 10392 (2017) 1-7.
  17. S. Yamamoto, J. Kataoka, T. Oshima, T. Ogata, T. Watabe, H. Ikeda, Y. Kanai, J. Hatazawa, Development of a high resolution gamma camera system using finely grooved GAGG scintillator, Nucl. Instrum. Methods Phys. Res., Sect. A 821 (2016) 28-33. https://doi.org/10.1016/j.nima.2016.03.060
  18. F.R. Schneider, K. Shimazoe, I. Somlai-Schweiger, S.I. Ziegler, A PET detector prototype based on digital SiPMs and GAGG scintillators, Phys. Med. Biol. 60 (2015) 1667-1679. https://doi.org/10.1088/0031-9155/60/4/1667
  19. N.J. Cherepy, B.W. Sturm, O.B. Drury, T.A. Hurst, S.A. Sheets, L.E. Ahle, C.K. Saw, M.A. Pearson, S.A. Payne, A. Burger, L.A. Boatner, J.O. Ramey, E.V. van Loef, J. Glodo, R. Hawrami, W.M. Higgins, K.S. Shah, W.W. Moses, SrI2 scintillator for gamma ray spectroscopy, Proc. SPIE 7449 (2009) 1-6.
  20. K. Nishimoto, Y. Yokota, S. Kurosawa, J. Pejchal, K. Kamada, V. Chani, A. Yoshikawa, Effects of La, Gd, or Lu co-doping on crystal growth and scintillation properties of Eu:SrI2 single crystals, J. Cryst. Growth 401 (2014) 484-488. https://doi.org/10.1016/j.jcrysgro.2014.02.022
  21. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P.M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A.F. Chatziioannou, Y. Choi, Y.H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S.J. Glick, C.J. Groiselle, D. Guez, P.-F. Honore, S. Kerhoas-Cavata, A.S. Kirov, V. Kohli, M. Koole, M. Krieguer, D.J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M.C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F.R. Rannou, M. Rey, D.R. Schaart, C.R. Schmidtlein, L. Simon, T.Y. Song, J.-M. Vieira, D. Visvikis, R. Van de Walle, E. Wieers, C. Morel, GATE: a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (2004) 4543-4561. https://doi.org/10.1088/0031-9155/49/19/007
  22. M. Yoshino, K. Kamada, Y. Shoji, S. Kurosawa, Y. Yokota, Y. Ohashi, A. Yoshikawa, S. Yamamoto, Development of Eu:SrI2 scintillator array for gamma-ray imaging applications, IEEE Trans. Nucl. Sci. 64 (2017) 1647-1651. https://doi.org/10.1109/TNS.2017.2676769
  23. J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski, M. Grodzicka, K. Kamada, K. Tsutsumi, Y. Usuki, T. Yanagida, A. Yoshikawa, Performance of cerium-doped Gd3Al2Ga3O12(GAGG:Ce) scintillator in gamma-ray spectrometry, Nucl. Instrum. Methods Phys. Res., Sect. A 712 (2013) 34-40. https://doi.org/10.1016/j.nima.2013.01.064
  24. T.E. Blue, J.C. Yanch, Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors, J. Neuro Oncol. 62 (2003) 19-31. https://doi.org/10.1023/A:1023247222043
  25. S.H. Park, C.Y. Han, S.Y. Kim, J.K. Kim, Use of the CT images for BNCT calculation: development of BNCT treatment planning system and its applications to dose calculation for voxel phantoms, Radiat. Protect. Dosim. 110 (2004) 661-667. https://doi.org/10.1093/rpd/nch235
  26. A. Rorer, Current Status of Neutron Capture Therapy, International Atomic Energy Agency, 2001, pp. 6-8. IAEA-TECDOC-1223.
  27. A.L. Weinmann, C.B. Hruska, M.K. O'Connor, Design of optimal collimator for dedicated molecular breast imaging systems, Med. Phys. 36 (2009) 845-856. https://doi.org/10.1118/1.3077119
  28. M. F Smith, S. Majewski, A.G. Weisenberger, Optimizing pinhole and parallel hole collimation for scintimammography with compact pixelated detectors, IEEE Trans. Nucl. Sci. 50 (2003) 321-326. https://doi.org/10.1109/TNS.2003.812436
  29. S.R. Cherry, J.A. Sorenson, M.E. Phelps, Image Quality in Nuclear Medicine, Physics in Nuclear Medicine, Saunders, Philadelphia, 2012, pp. 243-249.