DOI QR코드

DOI QR Code

Effect of packing structure on anisotropic effective thermal conductivity of thin ceramic pebble bed

  • Wang, Shuang (School of Mechanical Engineering, Anhui Polytechnic University) ;
  • Wang, Shuai (Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China) ;
  • Wu, Bowen (School of Mechanical Engineering, Anhui Polytechnic University) ;
  • Lu, Yuelin (School of Mechanical Engineering, Anhui Polytechnic University) ;
  • Zhang, Kefan (School of Nuclear Science and Technology, University of Science and Technology of China) ;
  • Chen, Hongli (School of Nuclear Science and Technology, University of Science and Technology of China)
  • Received : 2020.09.13
  • Accepted : 2021.01.12
  • Published : 2021.07.25

Abstract

Helium cooled solid breeder blanket as an important blanket candidate of the Tokamak fusion reactor uses ceramic pebble bed for tritium breeding. Considering the poor effective thermal conductivity of the ceramic breeder pebble bed, thin structure of tritium breeder pebble bed is usually adopted in the blanket design. The container wall has a great influence on the thin pebble bed packing structure, especially for the assembly of mono-sized particles, and thin pebble bed will appear anisotropic effective thermal conductivity phenomenon. In this paper, thin ceramic pebble beds composed of 1 mm diameter Li4SiO4 particles are generated by the EDEM 2.7. The effective thermal conductivity of different thickness pebble beds in the three-dimensional directions are analyzed by three-dimensional thermal network method. It is observed that thin Li4SiO4 pebble bed showing anisotropic effective thermal conductivity under the practical design size. Normally, the effective thermal conductivity along the bed vertical direction is higher than the horizontal direction due to the gravity effect. As the thickness increases from 10 mm to 40 mm, the effective thermal conductivity of the pebble bed gradually increases.

Keywords

Acknowledgement

This work was supported by the Research Initiation Foundation of Anhui Polytechnic University (No. 2020YQQ032 and No. 2020YQQ030) and the Anhui Polytechnic University Fund pre research project (No. Xjky2020007).

References

  1. L. A, Artsimovich, Tokamak devices, Nucl. Fusion 12 (2) (1972) 215. https://doi.org/10.1088/0029-5515/12/2/012
  2. Y. Wan, et al., Overview of the present progress and activities on the CFETR, Nucl. Fusion 57 (10) (2017) 102009. https://doi.org/10.1088/0029-5515/57/10/102009
  3. H. Chen, et al., Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR, Fusion Eng. Des. 96-97 (2015) 89-94. https://doi.org/10.1016/j.fusengdes.2015.02.045
  4. G. Zhou, et al., Design study on the new EU DEMO HCPB breeding blanket: thermal analysis, Prog. Nucl. Energy 98 (2017) 167-176. https://doi.org/10.1016/j.pnucene.2017.03.013
  5. K. Feng, et al., Current progress of Chinese HCCB TBM program, Fusion Eng. Des. 109 (2016) 729-735. https://doi.org/10.1016/j.fusengdes.2016.02.010
  6. F. Hernandez, et al., Overview of the HCPB research activities in EURO fusion, IEEE Trans. Plasma Sci. 46 (2018) 2246-2261.
  7. S. Wang, et al., Numerical influence analysis of the packing structure on ceramic breeder pebble beds, Fusion Eng. Des. 140 (2019) 41-47. https://doi.org/10.1016/j.fusengdes.2019.01.140
  8. B. Gong, et al., Numerical investigation of the pebble bed structures for HCCB TBM, Fusion Eng. Des. 136 (2018) 1444-1451. https://doi.org/10.1016/j.fusengdes.2018.05.033
  9. H. Chen, et al., Theoretical and experimental study on effective thermal conductivity of pebble beds for fusion blanket, Fusion Eng. Des. 124 (2017) 792-796. https://doi.org/10.1016/j.fusengdes.2017.03.169
  10. J. Zheng, et al., A measurement platform scheme and data post-processing method for thermal conductivity of Li4SiO4 pebble beds, J. Fusion Energy 35 (3) (2017) 524-528. https://doi.org/10.1007/s10894-016-0063-4
  11. Y. Feng, et al., Experimental investigation of thermal properties of the Li4SiO4 pebble beds, J. Plasma Fusion Res. 11 (SERIES) (2015).
  12. D. Mandal, et al., Experimental measurement of effective thermal conductivity of packed lithium-titanate pebble bed, Fusion Eng. Des. 87 (2012) 67-76. https://doi.org/10.1016/j.fusengdes.2011.09.003
  13. D. Mandal, et al., Experimental investigation of heat transfer in gasesolid packed fluidized bed, Powder Technol. 246 (2013) 252-268. https://doi.org/10.1016/j.powtec.2013.04.054
  14. A. Abou-Sena, et al., Experimental measurements of the effective thermal conductivity of a lithium titanate (Li2TiO3) pebbles-packed bed, Med. Prog. Technol. 181 (2007) 206-212.
  15. X. Wang, et al., A prediction model for the effective thermal conductivity of mono-sized pebble beds, Fusion Eng. Des. 103 (2016) 136-151. https://doi.org/10.1016/j.fusengdes.2015.12.051
  16. E.U. Schlunder, Particle heat transfer, Munchen. Proceedings of the Seventh International Heat Transfer Conference, 1982, pp. 195-211.
  17. M. Okazaki, et al., Effective thermal conductivity for granular beds of various binary mixtures, J. Chem. Eng. Jpn. 14 (3) (1981) 183-189. https://doi.org/10.1252/jcej.14.183
  18. S. Yagi, D. Kunii, Studies on effective thermal conductivities in packed beds, AIChE J. 3 (1957) 373-381. https://doi.org/10.1002/aic.690030317
  19. M. Moscardini, et al., Discrete element method for effective thermal conductivity of packed pebbles accounting for the Smoluchowski effect, Fusion Eng. Des. 127 (2018) 192-201. https://doi.org/10.1016/j.fusengdes.2018.01.013
  20. R.K. Desu, et al., DEM simulation of packing mono-sized pebbles into prismatic containers through different filling strategies, Fusion Eng. Des. 127 (2018) 259-266. https://doi.org/10.1016/j.fusengdes.2018.01.005
  21. S. Wang, et al., Crushed model and uniaxial compression analysis of random packed ceramic pebble bed by DEM, Fusion Eng. Des. 128 (2018) 53-57. https://doi.org/10.1016/j.fusengdes.2018.01.028
  22. X. Wang, et al., Computational study on the behaviors of granular materials under mechanical cycling, J. Appl. Phys. 118 (2015) 174901. https://doi.org/10.1063/1.4934565
  23. P.A. Cundall, O. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1) (1979) 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  24. G.K. Batchelor, R.W. O'brien, Thermal or electrical conduction through a granular material, Proc. Roy. Soc. Lond. A. 355 (1682) (1977) 313-333. https://doi.org/10.1098/rspa.1977.0100
  25. T.S. Yun, T.M. Evans, Three-dimensional random network model for thermal conductivity in particulate materials, Comput. Geotech. 37 (2010) 991-998. https://doi.org/10.1016/j.compgeo.2010.08.007
  26. N. Zaccari, D. Aquaro, Mechanical characterization of Li2TiO3 and Li4SiO4 pebble beds: experimental determination of the material properties and of the pebble bed effective values, Fusion Eng. Des. 82 (15-24) (2007) 2375-2382. https://doi.org/10.1016/j.fusengdes.2007.05.008
  27. A. Abou-Sena, et al., Effective thermal conductivity of lithium ceramic pebble beds for fusion blankets: a review, Fusion Sci. Technol. 47 (4) (2005) 1094-1100. https://doi.org/10.13182/fst05-3
  28. M.C. Billone, et al., ITER Solid Breeder Blanket Materials Database, Argonne National Lab., 1993.
  29. N. Zaccari, D. Aquaro, Mechanical characterization of Li2TiO3 and Li4SiO4 pebble beds: experimental determination of the material properties and of the pebble bed effective values, Fusion Eng. Des. 82 (15-24) (2007) 2375-2382. https://doi.org/10.1016/j.fusengdes.2007.05.008
  30. P. Gierszewski, Review of properties of lithium metatitanate, Fusion Eng. Des. 39 (1998) 739-743. https://doi.org/10.1016/S0920-3796(97)00168-3
  31. H. Petersen, The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 Bar and from Room Temperature to about 1800 K, Jul. Gjellerup, 1970.
  32. B. Gong, et al., Discrete element modeling of pebble bed packing structures for HCCB TBM, Fusion Eng. Des. 121 (2017) 256-264. https://doi.org/10.1016/j.fusengdes.2017.08.002
  33. W. Dai, et al., The effects of packing structure on the effective thermal conductivity of granular media: a grain scale investigation, Int. J. Therm. Sci. 142 (2019) 266-279. https://doi.org/10.1016/j.ijthermalsci.2019.04.028
  34. C. Kang, et al., Transient hot-Wire experimental system for measuring the effective thermal conductivity of a ceramic breeder pebble bed, Fusion Sci. Technol. 72 (3) (2017) 263-270.
  35. D. Garrett, H. Ban, Compressive pressure dependent anisotropic effective thermal conductivity of granular beds, Granul. Matter 13 (5) (2011) 685. https://doi.org/10.1007/s10035-011-0273-4
  36. X. Gao, et al., Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method, J. Nucl. Mater. 424 (2012) 210-215. https://doi.org/10.1016/j.jnucmat.2012.02.018
  37. K.M. Feng, Overview of the ITER test blanket module program, Nucl. Fusion Plasma Phys. 26 (2006) 161-169. https://doi.org/10.3969/j.issn.0254-6086.2006.03.001
  38. S. Wang, et al., Effect of packing structure on mechanical properties of the pebble beds and the probability of particle crushing[J], Fusion Eng. Des. 162 (2021d) 112137. https://doi.org/10.1016/j.fusengdes.2020.112137