DOI QR코드

DOI QR Code

The influence of MgO on the radiation protection and mechanical properties of tellurite glasses

  • Hanfi, M.Y. (Ural Federal University) ;
  • Sayyed, M.I. (Department of Physics, Faculty of Science, Isra University) ;
  • Lacomme, E. (Advanced Science Research, Junior, Eastchester High School) ;
  • Akkurt, I. (Physics Department, Suleyman Demirel University) ;
  • Mahmoud, K.A. (Ural Federal University)
  • Received : 2020.09.21
  • Accepted : 2020.12.12
  • Published : 2021.06.25

Abstract

Mechanical moduli, such as Young's modulus (E), Bulks modulus (B), Shear modulus (S), longitudinal modulus (L), Poisson's ratio (σ) and micro Hardness (H) were theoretically calculated for (100-x)TeO2+x MgO glasses, where x = 10, 20, 30, 40 and 45 mol%, based on the Makishima-Mackenzie model. The estimated results showed that the mechanical moduli and the microhardness of the glasses were improved with the increase of the MgO contents in the TM glasses, while Poisson's ratio decreased with the increase in MgO content. Moreover, the radiation shielding capacity was evaluated for the studied TM glasses. Thus, the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), transmission factor (TF) and half-value thickness (𝚫0.5) were simulated for gamma photon energies between 0.344 and 1.406 MeV. The simulated results showed that glass TM10 with 10 mol % MgO possess the highest LAC and varied in the range between 0.259 and 0.711 cm-1, while TM45 glass with 45 mol % MgO possess the lowest LAC and vary in the range between 0.223 and 0.587 cm-1 at gamma photon energies between 0.344 and 1.406 MeV. Furthermore, the BXCOM program was applied to calculate the effective atomic number (Zeff), equivalent atomic number (Zeq) and buildup factors (EBF and EABF) of the glasses. The effective removal cross-section for the fast neutrons (ERCSFN, ∑R) was also calculated theoretically. The received data depicts that the lowest ∑R was achieved for TM10 glasses, where ∑R = 0.0193 cm2 g-1, while TM45 possesses the highest ERCSFN where ∑R = 0.0215 cm2 g-1.

Keywords

References

  1. H.O. Tekin, Shams A.M. Issa, K.A. Mahmoud, F.I. El-Agawany, Y.S. Rammah, G. Susoy, M.S. Al-Buriahi, Mohamed M. Abuzaid, I. Akkurt, Nuclear radiation shielding competences of Barium (Ba) reinforced borosilicate glasses, Emerg. Mater. Res. 9-4 (2020), https://doi.org/10.1680/jemmr.20.00185.
  2. Yonca Yahsi Celen, Atilla Evcin, Synthesis and characterizations of magnetite-borogypsum for radiation shielding, Emerg. Mater. Res. 9-3 (2020) 770-775, https://doi.org/10.1680/jemmr.20.00098.
  3. Feride Kulali, Simulation studies on the radiological parameters of marble concrete, Emerg. Mater. Res. (2020), https://doi.org/10.1680/jemmr.20.00307, 9-4.
  4. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94. https://doi.org/10.1016/j.radphyschem.2018.02.026
  5. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (2018) 900-914, https://doi.org/10.1080/10420150.2018.1505890.
  6. D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite-based glasses, J. Non-Cryst. Solids 503-504 (2019) 158-168. https://doi.org/10.1016/j.jnoncrysol.2018.09.038
  7. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360. https://doi.org/10.1016/j.radphyschem.2017.09.022
  8. Iskender Akkurt, Effective atomic and electron numbers of some steels at different energies, Ann. Nucl. Energy 36-11 (12) (2009) 1702-1705, https://doi.org/10.1016/j.anucene.2009.09.005.
  9. Yasser Saad Rammah, Ashok Kumar, Karem Abdel-Azeem Mahmoud, Raouf El-Mallawany, Fouad Ismail El-Agawany, Gulfem Susoy, Huseyin Ozan Tekin, SnO-reinforced silicate glasses and utilization in gamma-radiation-shielding applications, Emerg. Mater. Res. 9-3 (2020) 1000-1008, https://doi.org/10.1680/jemmr.20.00150.
  10. Roya Boodaghi Malidarrea, Feride Kulali, Aysun Inal, Oz Ali, Monte Carlo simulation of the Waste Soda-Lime-Silica Glass system contained Sb2O3, Emerg. Mater. Res. (2020), https://doi.org/10.1680/jemmr.20.00202, 9-4.
  11. K.A. Mahmoud, O.L. Tashlykov, A.F. El Wakil, H.M.H. Zakaly, I.E. El Aassy, Investigation of radiation shielding properties for some building materials reinforced by basalt powder, AIP Conf. Proc. (2019) 2174.
  12. A.S. Abouhaswa, M.I. Sayyed, A.S. Altowyan, Y. Al-Hadeethi, K.A. Mahmoud, Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program, J. Non-Cryst. Solids 543 (2020) 120134, https://doi.org/10.1016/j.jnoncrysol.2020.120134.
  13. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2-B2O3-Bi2O3-LiF-SrCl2 glass system using Phy-X/PSD software, Ceram. Int. 46 (2020) 6136-6140. https://doi.org/10.1016/j.ceramint.2019.11.078
  14. Y. Al-Hadeethi, M.I. Sayyed, Hiba Mohammed, Lia Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies, Ceram. Int. 46 (2020) 251-257. https://doi.org/10.1016/j.ceramint.2019.08.258
  15. M.I. Sayyed, R. El-mallawany, Shielding properties of (100-x)TeO2e(x)MoO3 glasses, Mater. Chem. Phys. 201 (2017) 50-56. https://doi.org/10.1016/j.matchemphys.2017.08.035
  16. Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, A. Novatski, R. El-Mallawany, Role of ZnO on TeO2.Li2O.ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program, J. Non-Cryst. Solids 544 (2020) 120162, https://doi.org/10.1016/j.jnoncrysol.2020.120162.
  17. N.S. Hussain, G. Hubgerford, R. El-mallawany, M.J.M. Gomes, M.A. Lopes, N. Ali, J.D. Santos, S. Buddhudu, Absorption and emission analysis of RE3+(Sm3+ and Dy3+): lithum boto tellurite glasses, J. Nanosci. Nanotechnol. 9 (2009) 3672-3677. https://doi.org/10.1166/jnn.2009.NS49
  18. V. Kozhukharov, M. Marinov, G. Grigorova, Glass-formation range in binary tellurite systems containing transition metal oxides, J. Non-Cryst. Solids 28 (1978) 429-430. https://doi.org/10.1016/0022-3093(78)90092-3
  19. H. Burger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, S. Neov, Glass formation, properties and structure of glasses in the TeO2ZnO system, J. NonCryst. Solids 151 (1992) 134-142. https://doi.org/10.1016/0022-3093(92)90020-K
  20. K.A. Mahmoud, E. Lacomme, M.I. Sayyed, O.F. Ozpolat, O.L. Tashlykov, Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals, Heliyon 6 (2020), e03560. https://doi.org/10.1016/j.heliyon.2020.e03560
  21. A.S. Abouhaswa, M.I. Sayyed, Y. Al-Hadeethi, A.S. Altowyan, K.A. Mahmoud, Evaluation of optical and gamma ray shielding features for tungsten-based bismuth borate glasses, Opt. Mater. 106 (2020) 109981, https://doi.org/10.1016/j.optmat.2020.109981.
  22. F.I. El-Agawany, O.L. Tashlykov, K.A. Mahmoud, Y.S. Rammah, The radiationshielding properties of ternary SiO2-SnO-SnF2 glasses: simulation and theoretical study, Ceram. Int. (2020), https://doi.org/10.1016/j.ceramint.2020.04.042.
  23. Y.S. Rammah, K.A. Mahmoud, E. Kavaz, A. Kumar, F.I. El-Agawany, The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses, Ceram. Int. (2020), https://doi.org/10.1016/j.ceramint.2020.04.018.
  24. X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos Controlled Publication, 2003. LA-CP-03-0245.
  25. M.J. Berger, j H. Hubbel, XCOM: Photon Cross Sections Database, 1987. Gaithersburg, MD 20899, USA, http://physics.nist.gov/xcom.
  26. A. El-Adawy, R. El-Mallawany, Elastic modulus of tellurite glasses, J. Mater. Sci. Lett. 5 (1996) 2065-2067. https://doi.org/10.1007/BF00278623
  27. H. Elkholy, H. Othman, I. Hager, M. Ibrahim, D. de Ligny, Thermal and optical properties of binary magnesium tellurite glasses and their link to the glass structure, J. Alloys Compd. (2020), https://doi.org/10.1016/j.jallcom.2020.153781.
  28. A. Makishima, J.D. Mackenzie, Direct calculation of Young's modulus of glass, J. Non-Cryst. Solids 12 (1973) 35-45. https://doi.org/10.1016/0022-3093(73)90053-7
  29. A. Makishima, J.D. Mackenzie, Calculation of Bulks modulus, Shear modulus and Piosson's ratio of glass, J. Non-Cryst. Solids 17 (1975) 147-157. https://doi.org/10.1016/0022-3093(75)90047-2
  30. S. Inaba, S. Fujino, K. Morinaga, Young's modulus and compositional parameters of oxide glasses, J. Am. Ceram. Soc. 82 (1999) 3501-3507. https://doi.org/10.1111/j.1151-2916.1999.tb02272.x
  31. A. Abd El-Moneim, H.Y. Alfifi, Approach to dissociation energy and elastic properties of vanadate and V2O5-contained glasses from single bond strength: Part I, Mater. Chem. Phys. 207 (2018) 271-281, https://doi.org/10.1016/j.matchemphys.2017.12.057.
  32. R. Divina, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Physical and structural effect of modifiers on dysprosium ions incorporated boro-tellurite glasses for radiation shielding purposes, Ceram. Int. (2020), https://doi.org/10.1016/j.ceramint.2020.04.102.
  33. M.I. Sayyed, M.H.M. Zaid, N. Effendy, K.A. Matori, H.A. Sidek, E. Lacomme, K.A. Mahmoud, M.M. AlShammari, The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses, J. mater. Res. Technol. 9 (2020) 8429-8438, https://doi.org/10.1016/j.jmrt.2020.05.113.
  34. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3eCaO glasses, Ceram. Int. 46 (2020) 2055-2062. https://doi.org/10.1016/j.ceramint.2019.09.185
  35. Qiuling Chen, K.A. Naseer, K. Marimuthu, P. Suthanthira Kumar, Baoji Miao, K.A. Mahmoud, M.I. Sayyed, Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems, J. Austr. Ceram. Soc. (2020), https://doi.org/10.1007/s41779-020-00531-8.
  36. O. Eyecioglu, A.M. El-Khayatt, Y. Karabul, M. Caglar, O. Toker, O. Icelli, BXCOM: a software for computation of radiation sensing, Radiat. Eff. Defect Solid 174 (2019) 506-518, https://doi.org/10.1080/10420150.2019.1606811.
  37. A. El Abd, G. Mesbah, N.M.A. Mohammed, A. Ellithi, A simple Method for determining the effective removal cross section for fast neutrons, J. Radiat. Nucl. Appl. 2 (2016) 53-85.
  38. A. Abd El-Moneim, R. El-Mallawany, Analysis and prediction for elastic properties of quaternary tellurite Ag2O-V2O5-MoO32TeO2 and WO3-B2O3-MgO-TeO2 glasses, J. Non-Cryst. Solids 522 (2019) 119580, https://doi.org/10.1016/j.jnoncrysol.2019.119580.
  39. M.I. Sayyed, A.A. Ali, M.H.A. Mhareb, K.A. Mahmoud, K.M. Kaky, Baki, M.A. Mahdi, Novel tellurite glass (60-x)TeO2-10GeO2 -20ZnO-10BaO - xBi2O3 for radiation shielding, J. Alloys Compd. 844 (2020) 155668, https://doi.org/10.1016/j.jallcom.2020.155668.
  40. K.M. Kaky, M.I. Sayyed, A.A. Ali, M.H.A. Mhareb, K.A. Mahmoud, S.O. Baki, Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system, J. Non-Cryst. Solids 546 (2020) 120272, https://doi.org/10.1016/j.jnoncrysol.2020.120272.

Cited by

  1. A comprehensive study on the optical, mechanical, and radiation shielding properties of the TeO2-Li2O-GeO2 glass system vol.32, pp.11, 2021, https://doi.org/10.1007/s10854-021-06074-3
  2. Influence of Li2O Incrementation on Mechanical and Gamma-Ray Shielding Characteristics of a TeO2-As2O3-B2O3 Glass System vol.14, pp.14, 2021, https://doi.org/10.3390/ma14144060
  3. Comprehensive study of radiation shielding and mechanical features of Bi2O3-TeO2-B2O3-GeO2 glasses vol.57, pp.4, 2021, https://doi.org/10.1007/s41779-021-00623-z
  4. Gamma-ray-shielding parameters of some phantom fabrication materials for medical dosimetry vol.10, pp.3, 2021, https://doi.org/10.1680/jemmr.21.00043