DOI QR코드

DOI QR Code

Maintaining the close-to-critical state of thorium fuel core of hybrid reactor operated under control by D-T fusion neutron flux

  • Bedenko, Sergey V. (National Research Tomsk Polytechnic University) ;
  • Arzhannikov, Andrey V. (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences) ;
  • Lutsik, Igor O. (National Research Tomsk Polytechnic University) ;
  • Prikhodko, Vadim V. (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences) ;
  • Shmakov, Vladimir M. (Federal State Unitary Enterprise (Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics)) ;
  • Modestov, Dmitry G. (Federal State Unitary Enterprise (Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics)) ;
  • Karengin, Alexander G. (National Research Tomsk Polytechnic University) ;
  • Shamanin, Igor V. (National Research Tomsk Polytechnic University)
  • Received : 2020.10.05
  • Accepted : 2020.11.27
  • Published : 2021.06.25

Abstract

The results of full-scale numerical experiments of a hybrid thorium-containing fuel cell facility operating in a close-to-critical state due to a controlled source of fusion neutrons are discussed in this work. The facility under study was a complex consisting of two blocks. The first block was based on the concept of a high-temperature gas-cooled thorium reactor core. The second block was an axially symmetrical extended plasma generator of additional neutrons that was placed in the near-axial zone of the facility blanket. The calculated models of the blanket and the plasma generator of D-T neutrons created within the work allowed for research of the neutronic parameters of the facility in stationary and pulse-periodic operation modes. This research will make it possible to construct a safe facility and investigate the properties of thorium fuel, which can be continuously used in the epithermal spectrum of the considered hybrid fusion-fission reactor.

Keywords

Acknowledgement

This research was supported by RFBR and RNF, Project no.19-29-02005 and no.18-19-00136, and by Tomsk Polytechnic University, CEP Grant no.DRIaP_75/2019.

References

  1. G. Locatelli, C. Bingham, M. Mancini, Small modular reactors: a comprehensive overview of their economics and strategic aspects, Prog. Nucl. Energy 73 (2014) 75-85, https://doi.org/10.1016/j.pnucene.2014.01.010.
  2. M.K. Rowinski, T.J. White, J. Zhao, Small and Medium sized Reactors: a review of technology, Renew. Sustain. Energy Rev. 44 (2015) 643-656, https://doi.org/10.1016/j.rser.2015.01.006.
  3. H.E. Garcia, A. Mohanty, W.C. Lin, R.S. Cherry, Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generationePart I: dynamic performance analysis, Energy 52 (2013) 1-16, https://doi.org/10.1016/j.energy.2013.01.022.
  4. G. Black, M.A.T. Black, D. Solan, D. Shropshire, Carbon free energy development and the role of small modular reactors: a review and decision framework for deployment in developing countries, Renew. Sustain. Energy Rev. 43 (2015) 83-94, https://doi.org/10.1016/j.rser.2014.11.011.
  5. I.V. Shamanin, V.M. Grachev, Yu B. Chertkov, S.V. Bedenko, O. Mendoza, V.V. Knyshev, Neutronic properties of high-temperature gas-cooled reactors with thorium fuel, Ann. Nucl. Energy 113 (2018) 286-293, https://doi.org/10.1016/j.anucene.2017.11.045.
  6. I.V. Shamanin, S.V. Bedenko, Y.B. Chertkov, I.M. Gubaydulin, Gas-cooled thorium reactor with fuel block of the Unified design, Izvestiya Wysshikh Uchebnykh Zawedeniy 3 (2015) 124-134, https://doi.org/10.26583/npe.2015.3.13. Yadernaya Energetika.
  7. S.V. Bedenko, N. Ghal-Eh, I.O. Lutsik, I.V. Shamanin, A fuel for generation IV nuclear energy system: isotopic composition and radiation characteristics, Appl. Radiat. Isot. 147 (2019) 189-196, https://doi.org/10.1016/j.apradiso.2019.03.005.
  8. S. Bedenko, A. Karengin, N. Ghal-Eh, N. Alekseev, V. Kynshev, I. Shamanin, Thermo-physical properties of dispersion nuclear fuel for a new-generation reactor: a computational approach, AIP Conference Proceedings 2101 (2019), 020002, https://doi.org/10.1063/1.5099594.
  9. S.A. Linnik, A.V. Gaydachuk, I.V. Shamanin, Istochnik Plazmy Tlejushhego Razrjada S Effektom Pologe Katoda Dlja Modifikacii Svojstv Poverhnosti I Nanesenija Pokrytij, vol. 318, Izvestija Tomskogo politehnicheskogo universiteta, 2011, pp. 86-88.
  10. National Research Tomsk Polytechnic University. https://tpu.ru/en, 2020. (Accessed 20 September 2020).
  11. A.V. Arzhannikov, V.M. Shmakov, D.G. Modestov, S.V. Bedenko, V.V. Prikhodko, I.O. Lutsik, I. V, Shamanin, Facility to Study Neutronic Properties of a Hybrid Thorium Reactor with a Source of Thermonuclear Neutrons Based on a Magnetic Trap, Nuclear Engineering and Technology, 2020, https://doi.org/10.1016/j.net.2020.05.003.
  12. A. Arzhannikov, S. Bedenko, V. Shmakov, V. Knyshev, I. Lutsik, V. Prikhodko, I. Shamanin, Gas-cooled thorium reactor at various fuel loadings and its modification by a plasma source of extra neutrons, Nucl. Sci. Tech. 30 (2019) 181, https://doi.org/10.1007/s41365-019-0707-y.
  13. Gas-Dynamic Multiple-Mirror Trap, Budker Institute of nuclear physics of Siberian branch Russian academy of Sciences, 20.08.20, http://inp.nsk.su, 2020.
  14. A. Beklemishev, A. Anikeev, V. Astrelin, P. Bagryansky, A. Burdakov, V. Davydenko, D. Gavrilenko, A. Ivanov, I. Ivanov, M. Ivantsivsky, I. Kandaurov, Novosibirsk project of gas-dynamic multiple-mirror trap, Fusion Sci. Technol. 63 (2013) 46-51, https://doi.org/10.13182/FST13-A16872.
  15. A.V. Anikeev, P.A. Bagryansky, A.D. Beklemishev, A.A. Ivanov, O.A. Korobeinikova, Y.V. Kovalenko, A.A. Lizunov, V.V. Maximov, S.V. Murakhtin, E.I. Pinzhenin, V.V. Prikhodko, The GDT experiment: status and recent progress in plasma parameters, Fusion Sci. Technol. 68 (1) (2015) 1-7, https://doi.org/10.13182/FST14-867.
  16. A. Gandini, M. Salvatores, The physics of subcritical multiplying systems, J. Nucl. Sci. Technol. 39 (6) (2002) 673-686, https://doi.org/10.1080/00223131.2019.1699188.
  17. S. Shiroya, A. Yamamoto, K. Shin, T. Ikeda, S. Nakano, H. Unesaki, Basic study on neutronics of future neutron source based on accelerator driven subcritical reactor concept in Kyoto University Research Reactor Institute (KURRI), Prog. Nucl. Energy 40 (3-4) (2002) 489-496, https://doi.org/10.1016/S0149-1970(02)00042-2.
  18. J. Knaster, F. Arbeiter, P. Cara, S. Chel, A. Facco, R. Heidinger, A. Ibarra, A. Kasugai, H. Kondo, G. Micciche, K. Ochiai, IFMIF, the European-Japanese efforts under the Broader Approach agreement towards a Li(d,xn) neutron source: current status and future options, Nucl. Materials Energ 9 (2016) 46-54, https://doi.org/10.1016/j.nme.2016.04.012.
  19. Y. Wu, Design and R&D progress of China lead-based reactor for ADS research facility, Engineering 2 (1) (2016) 124-131, https://doi.org/10.1016/J.ENG.2016.01.023.
  20. H.A. Abderrahim, P. Baeten, D.D. Bruyn, R. Fernandez, MYRRHAeA multipurpose fast spectrum research reactor, Energy Convers. Manag. 63 (2012) 4-10, https://doi.org/10.1016/j.enconman.2012.02.025.
  21. L. Yang, W. Zhan, A new concept for ADS Spallation target: gravity-driven dense granular flow targets, in: J.P. Revol, M. Bourquin, Y. Kadi, E. Lillestol, J.C. de Mestral, K. Samec (Eds.), Thorium Energy for the World, Springer, Cham, 2016, https://doi.org/10.1007/978-3-319-26542-1_47.
  22. W. Gudowski, V. Arzhanov, C. Broeders, I. Broeders, J. Cetnar, R. Cummings, M. Ericsson, B. Fogelberg, C. Gaudard, A. Koning, P. Landeyro, Review of the European project - impact of Accelerator-Based Technologies on nuclear fission safety (IABAT), Prog. Nucl. Energy 38 (2001) 135-151, https://doi.org/10.1016/S0149-1970(00)00099-8.
  23. A.V. Anikeev, P.A. Bagryansky, A.A. Ivanov, A.N. Karpushov, S.A. Korepanov, V.V. Maximov, S.V. Murakhtin, A. Yu Smirnov, K. Noack, G. Otto, Fast ion relaxation and confinement in the gas dynamic trap, Nucl. Fusion 40 (4) (2000) 753-766. https://iopscience.iop.org/article/10.1088/0029-5515/40/4/301/pdf.
  24. D.V. Yurov, V.V. Prikhodko, Yu A. Tsidulko, Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma, Plasma Phys. Rep. 42 (3) (2016) 210-225, https://doi.org/10.1134/S1063780X16030090.
  25. Y.Z. Kandiev, E.A. Kashaeva, K.E. Kuropatenko, E.S. Lobanova, L.V. Lukin, G.N. Malakhov, A.A. Malyshkin, G.N. Modestov, D.G. Mukhamadiev, R.F. Orlov, V. G, PRIZMA status, Ann. Nucl. Energy 82 (2015) 116-120, https://doi.org/10.1016/j.anucene.2014.09.006.
  26. J. Leppaanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024.
  27. Evaluated Nuclear Data Library Descriptions, Nuclear energy agency. https://oecd-nea.org/dbdata/data/nds_eval_libs.htm, 2020. (Accessed 3 March 2019).
  28. A.V. Arzhannikov, I.V. Shamanin, S.V. Bedenko, Hybrid thorium energy producing subcritical stand with a fusion neutron source based on a magnetic trap, Izvestiya Wysshikh Uchebnykh Zawedeniy 2 (2019) 43-54, https://doi.org/10.26583/npe.2019.2.04. Yadernaya Energetika.