Acknowledgement
This study is supported by the Chinese TMSR Strategic Pioneer Science and Technology Project (No.XDA02010000), the Frontier Science Key Program of Chinese Academy of Sciences (No.QYZDYSSW-JSC016).
References
- M.W. Rosenthal, P.R. Kasten, R.B. Briggs, Molten-salt reactors-pistory, states, and potential, Nucl. App. Technol. 8 (1970) 107-117. https://doi.org/10.13182/NT70-A28619
- C. Forsberg, The advanced high-temperature reactor: high-temperature fuel, liquid salt coolant, liquid-metal-reactor plant, Prog. Nucl. Energy 47 (2005) 32-43. https://doi.org/10.1016/j.pnucene.2005.05.002
- J. Serp, M. Allibert, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319. https://doi.org/10.1016/j.pnucene.2014.02.014
- M.H. Jiang, H.J. Xu, Z.M. Dai, Advanced fission energy program-TMSR nuclear energy system, Bull. Chin. Acad. Sci. 3 (2012) 366-374 (In Chinese).
- J. Krepel, U. Grundmann, et al., DYN1D-MSR dynamics code for molten salt reactors, Ann. Nucl. Energy 32 (2005) 1799-1824. https://doi.org/10.1016/j.anucene.2005.07.007
- J. Krepel, U. Grundmann, et al., DYN3D-MSR spatial dynamics code for molten salt reactors, Ann. Nucl. Energy 34 (2007) 449-462. https://doi.org/10.1016/j.anucene.2006.12.011
- M. Zanetti, A. Cammi, A. Luzzi, et al., Extension of the FAST code system for the modelling and simulation of MSR dynamics, in: International Congress on Advances in Nuclear Power Plants, May 03-06, 2015. Nice, France.
- C. Tripodo, A.D. Ronco, S. Lorenzi, Development of a control-oriented power plant simulator for the molten salt fast reactor, J. Nucl. Sci. Technol. 5 (2019) 13.
- M.S. Greenwood, B.R. Betzler, et al., Demonstration of the advanced dynamic system modeling tool transform in a molten salt reactor application via a model of the molten salt hemonstration reactor, Nucl. Technol. 206 (2019) 1-27.
- J. Ruan, Y. Zou, et al., Fluoride-salt cooled higlrtemperature reactor hardwareirrthe-loop simulation and preliminary test, Atom. Energy Sci. Technol. 52 (2018) 659-665 (In Chinese).
- S. Patankar, Numerical Heat Transfer and Fluid Flow, first ed., Taylor & Francis, Oxford, 1980.
- H. Francis Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids 8 (1965) 2182. https://doi.org/10.1063/1.1761178
- N.E. Todreas, M.S. Kazimi, Nuclear Systems I Thermal Hydraulic Fundamentals, first ed., Hemisphere Publishing Corporation, New York, 1990.
- S.J. Ball, T.W. Kerlin, Stability Analysis of the Molten Salt Reactor Experiment, Oak Ridge National Laboratory, 1965. ORNL-TM-1070.
- F. Allan Henry, Scott, Nuclear Reactor Analysis, first ed., John Wiley and Sons, New York, 1976.
- F. Blanchon, T. Ha-Duong, J. Planchard, Numerical methods for solving the reactor kinetic equations, Prog. Nucl. Energy 22 (1988) 173-180. https://doi.org/10.1016/0149-1970(88)90008-X
- E. Virgil Schrock, A revised ANS Standard for decay heat from fission products, Nucl. Technol. 46 (1979) 323-331. https://doi.org/10.13182/NT79-A32334
- K.J. Astrom, T. Hagglund, PID Controllers : Theory, Design and Tuning, first ed., Instrument Society of America, New York, 1995.
- L. Kendrick Huddar, Application of frequency response methods in separate and integral effects tests for molten salt cooled and fueled reactors, Nucl. Eng. Des. 329 (2018) 3-11. https://doi.org/10.1016/j.nucengdes.2017.11.045
- N. Zweibaum, J.E. Bickel, Design, Fabrication and Startup Testing of the Compact Integral Effects Test Facility in Support of Fluoride-Salt-Cooled, High Temperature Reactor Technology, in: International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 2015. Chicago, August 30-September 4.
- P.N. Haubenreich, Molten-salt Reactor Experiments, Oak Ridge National Laboratory, 1969. ORNL-4344.
- R.C. Robertson, MSRE Design and Operations Report, Part I-Description of Reactor Design, Oak Ridge National Laboratory, 1965. ORNL-TM-278.
- M. Delpech, S. Dulla, C. Garzenne, Benchmark of dynamic simulation tools for molten salt reactors, in: Proceedings of the International Conference GLOBAL, New Orleans, LA, 2003.
- B.E. Prince, J.R. Engel, S.J. Ball, Zero-power Physical Experiments on Molten-Salt Reactor Experiment, Oak Ridge National Laboratory, 1968. ORNL-4233.
- G.J. Auwerda, D. Lathouwers, Computational modeling of a molten salt Reactor, ResearchGate (2007). https://www.researchgate.net/publication/242184604.
- J. Cai, X.B. Xia, Analysis on reactivity initiated transient from control rod failure events of a molten salt reactor, Nucl. Sci. Tech. 25 (2014) 78-82. https://doi.org/10.13538/j.1001-8042/nst.25.050601
- C.B. Shi, M.S. Cheng, G.M. Liu, Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code, Nucl. Eng. Des. 305 (2016) 378-388. https://doi.org/10.1016/j.nucengdes.2016.05.034