DOI QR코드

DOI QR Code

Protective effect of Eucommia ulmoides oliver leaves against PM2.5-induced oxidative stress in neuronal cells in vitro

미세먼지(PM2.5)로 유도된 산화적 스트레스에 대한 두충(Eucommia ulmoides Oliver) 잎의 in vitro 뇌 신경세포 보호 효과

  • Kim, Min Ji (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jong Min (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Moon, Jong Hyun (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Gil Han (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Hyo Lim (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jeong, Hye Rin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 김민지 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 강진용 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 박선경 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 김종민 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 문종현 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 김길한 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 이효림 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 정혜린 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 허호진 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원)
  • Received : 2021.04.30
  • Accepted : 2021.06.16
  • Published : 2021.08.31

Abstract

This study was performed to examine the neuroprotective effect of the ethyl acetate fraction from Eucommia ulmoides oliver leaf (EFEL) on PM2.5-induced cytotoxicity. EFEL had higher total phenolic and flavonoid contents than the other fractions. In ABTS and DPPH radical scavenging activities, the IC50 of EFEL was measured as 212.80 and 359.13 ㎍/mL, respectively. To investigate the neuroprotective effect of EFEL, MTT and DCF-DA assays were performed on HT22, MC-IXC, and BV-2 cells. EFEL effectively decreased PM2.5-induced intercellular reactive oxygen species (ROS) content and inhibited PM2.5-induced cell death. In the results of protein expression related to cellular cytotoxicity on microglial cells (BV-2), EFEL had an improvement effect on cell apoptosis and inflammatory pathways. Rutin and chlorogenic acid were identified as the main physiological compounds. Moreover, it was expected that EFEL, including rutin and chlorogenic acid, could be functional food substances with neuroprotective effects against PM2.5-induced oxidative stress.

본 연구에서는 두충 잎의 분획물을 이용하여 미세먼지(PM2.5)로 유도한 in vitro 뇌 신경세포 독성에 대한 항산화 활성 및 세포보호 효과를 확인하였다. EFEL은 우수한 ABTS 및 DPPH 라디칼 소거능을 나타냈으며, 지질과산화물 억제활성에서 양성대조군인 catechin과 동일한 농도에서 유사한 활성을 나타냈다. 또한, EFEL은 미세먼지로 유도된 해마세포(HT22), 뇌신경세포(MC-IXC) 및 미세아교세포(BV-2) 내의 ROS 수준을 효과적으로 감소시켜주었으며, 세포 생존능을 증가시킴으로써 세포보호 효과를 나타냈다. 미세먼지로 활성화된 BV-2에서 EFEL은 세포 활성화와 관련된 세포막 수용체인 TLR4와 p-JNK의 발현을 감소시켰다. 또한, 세포 사멸에 관여하는 caspase-3 활성화 전 단계인 procaspase-3와 세포 생존 경로에 관여하는 p-Akt 발현의 증가된 수준을 나타냈며, 염증성 사이토카인으로써 증가된 TNF-α의 수준을 감소시켰다. EFEL의 생리활성 물질을 HPLC로 분석한 결과, rutin과 chlorogenic acid가 확인되었다. 결과적으로, 두충 잎의 아세트산에틸 분획물은 우수한 페놀성 화합물 및 플라보노이드 함량을 나타냄으로써 높은 항산화능을 보였으며, 미세먼지로 유도된 산화적 스트레스에서 사멸 및 염증반응을 조절하여 뇌 신경세포를 보호하였다. 이를 고려할 때, EFEL은 미세먼지로 유도된 염증성 뇌신경세포 관련 질환 예방에 도움을 줄 수 있는 건강기능식품 소재로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 개인기초연구(2018R1D1A3B07043398)의 지원을 받아 수행된 결과로 이에 감사드립니다.

References

  1. Anderson HR, Atkinson RW, Peacock J, Marston L, Konstantinou K. World Health Organization, Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3): report of a WHO task. EUR/04/5046026, Copenhagen, WHO Regional Office for Europe, 73p (2004)
  2. Balazs L, Leon M. Evidence of an oxidative challenge in the Alzheimer's brain. Neurochem. Res. 19: 1131-1137 (1994) https://doi.org/10.1007/BF00965146
  3. Block ML, Calderon-Garciduenas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 32: 506-516 (2009) https://doi.org/10.1016/j.tins.2009.05.009
  4. Bozic I, Savic D, Laketa D, Bjelobaba I, Milenkovic I, Pekovic S, Nedeljkovic N, Lavrnja I. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia. PLoS One 10: 0118372 (2015)
  5. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  6. Chen XN, Fan JF, Yue X, Wu XR, Li LT. Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). J. Food Sci. 73: 24-28 (2008)
  7. Dai X, Huang Q, Zhou B, Gong Z, Liu Z, Shi S. Preparative isolation and purification of seven main antioxidants from Eucommia ulmoides Oliv.(Du-zhong) leaves using HSCCC guided by DPPHHPLC experiment. Food Chem. 139: 563-570 (2013) https://doi.org/10.1016/j.foodchem.2013.02.006
  8. Hao G, Dong Y, Huo R, Wen K, Zhang Y, Liang G. Rutin inhibits neuroinflammation and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage, possibly through suppressing the RAGE-NF-κB inflammatory signaling pathway. Neurochem. Res. 41: 1496-1504 (2016) https://doi.org/10.1007/s11064-016-1863-7
  9. He X, Wang J, Li M, Hao D, Yang Y, Zhang C, He R, Tao R. Eucommia ulmoides Oliv.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 151: 78-92 (2014) https://doi.org/10.1016/j.jep.2013.11.023
  10. Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 63: 81-90 (2014) https://doi.org/10.1007/s00011-013-0674-4
  11. Ito H, Sun XL, Watanabe M, Okamoto M, Hatano T. Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Biosci. Biotechnol. Biochem. 72: 885-888 (2008) https://doi.org/10.1271/bbb.70670
  12. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 47: 3954-3962 (1999) https://doi.org/10.1021/jf990146l
  13. Kang SM, Cha SH, Ko JY, Kang MC, Kim D, Heo SJ, Kim JS, Heu MS, Kim YT, Jung WK, Jeon YJ. Neuroprotective effects of phlorotannins isolated from a brown alga, Ecklonia cava, against H2O2-induced oxidative stress in murine hippocampal HT22 cells. Environ. Toxicol. Phar. 34: 96-105 (2012) https://doi.org/10.1016/j.etap.2012.03.006
  14. Kelly FJ, Fussell JC. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60: 504-526 (2012) https://doi.org/10.1016/j.atmosenv.2012.06.039
  15. Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5: 1163-1180 (2015) https://doi.org/10.3390/nano5031163
  16. Kim EJ, Choi JY, Yu MR, Kim MY, Lee SH, Lee BH. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J. Food Sci. Anim. Resour. 44: 337-342 (2012)
  17. Kim HY, Moon BH, Lee HJ, Choi DH. Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity. J. Ethnopharmacol. 93: 227-230 (2004) https://doi.org/10.1016/j.jep.2004.03.047
  18. Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Eviron. Int. 74: 136-143 (2015)
  19. Koh W, Shin JS, Lee J, Lee IH, Lee SK, Ha IH, Chung HJ. Antiinflammatory effect of Cortex Eucommiae via modulation of the toll-like receptor 4 pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 209: 255-263 (2017) https://doi.org/10.1016/j.jep.2017.08.001
  20. Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, Park YI, Lee CK, Kim YB, Lee SY, Jang CG. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 649: 210-217 (2010) https://doi.org/10.1016/j.ejphar.2010.09.001
  21. Lee HY, Lee GH, Lee MR, Kim HK, Kim NY, Kim SH, Lee YC, Kim HR, Chae, HJ. Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation. PLoS One 8: 81349 (2013)
  22. Ling SH, van Eeden SF. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int. J. Chron. Obstrct. Pulmon. Dis. 4: 233- 243 (2009) https://doi.org/10.2147/COPD.S5098
  23. Luo D, Or TC, Yang CL, Lau AS. Anti-inflammatory activity of iridoid and catechol derivatives from Eucommia ulmoides Oliver. ACS Chem. Neurosci. 5: 855-866 (2014) https://doi.org/10.1021/cn5001205
  24. Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA. Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol. Toxicol. 26: 481-498 (2010) https://doi.org/10.1007/s10565-010-9158-2
  25. MohanKumar SM, Campbell A, Block M, Veronesi B. Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology 29: 479-488 (2008) https://doi.org/10.1016/j.neuro.2007.12.004
  26. Moore K, Roberts LJ. Measurement of lipid peroxidation. Free Radical Res. 28: 659-671 (1998) https://doi.org/10.3109/10715769809065821
  27. Ni H, Jin W, Zhu T, Wang J, Yuan B, Jiang J, Liang W, Ma Z. Curcumin modulates TLR4/NF-κB inflammatory signaling pathway following traumatic spinal cord injury in rats. J. Spinal Cord Med. 38: 199-206 (2015) https://doi.org/10.1179/2045772313Y.0000000179
  28. Pietta PG. Flavonoids as antioxidants. J. Nat. Prod. 63: 1035-1042 (2000) https://doi.org/10.1021/np9904509
  29. Peters A. Particulate matter and heart disease: evidence from epidemiological studies. Toxicol. Appl. Pharm. 207: 477-482 (2005) https://doi.org/10.1016/j.taap.2005.04.030
  30. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med, 49: 1603-1616 (2010) https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  31. Shi X, Zhou N, Cheng J, Shi X, Huang H, Zhou M, Zhu H. Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis. BMC Pharmacol. Toxicol, 20: 1-10 (2019) https://doi.org/10.1186/s40360-018-0281-7
  32. Traverso N, Menini S, Maineri EP, Patriarca S, Odetti P, Cottalasso D, Marinari UM, Pronzato MA. Malondialdehyde, a lipoperoxidation-derived aldehyde, can bring about secondary oxidative damage to proteins. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 59: 890-895 (2004)
  33. Ubando-Rivera J, Navarro-Ocana A, Valdivia-Lopez MA. Mexican lime peel: Comparative study on contents of dietary fibre and associated antioxidant activity. Food Chem. 89: 57-61 (2005) https://doi.org/10.1016/j.foodchem.2004.01.076
  34. Wang SN, Xie GP, Qin CH, Chen YR, Zhang KR, Li X, Wu Q, Dong WQ, Yang J, Yu B. Aucubin prevents interleukin-1 beta induced inflammation and cartilage matrix degradation via inhibition of NF-κB signaling pathway in rat articular chondrocytes. Int. Immunopharmacol. 24: 408-415 (2015) https://doi.org/10.1016/j.intimp.2014.12.029
  35. Wang Y, Zhang M, Li Z, Yue J, Xu M, Zhang Y, Yung KKL, Li R. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere, 218: 577-588 (2019) https://doi.org/10.1016/j.chemosphere.2018.11.149
  36. Wu J, Chen H, Li H, Tang Y, Yang L, Cao S, Qin D. Antidepressant potential of chlorogenic acid-enriched extract from Eucommia ulmoides Oliver bark with neuron protection and promotion of serotonin release through enhancing synapsin I expression. Molecules 21: 260 (2016) https://doi.org/10.3390/molecules21030260
  37. Xu Z, Tang M, Li Y, Liu F, Li X, Dai R. Antioxidant properties of Du-zhong (Eucommia ulmoides Oliv.) extracts and their effects on color stability and lipid oxidation of raw pork patties. J. Agric. Food Chem. 58: 7289-7296 (2010) https://doi.org/10.1021/jf100304t
  38. Yan Y, Zhao H, Chen C, Zou L, Liu X, Chai C, Wang C, Shi J, Chen, S. Comparison of multiple bioactive constituents in different parts of Eucommia ulmoides based on UFLC-QTRAP-MS/MS combined with PCA. Molecules 23: 643 (2018) https://doi.org/10.3390/molecules23030643
  39. Yang J, Guo J, Yuan J. In vitro antioxidant properties of rutin. LWTFood. Sci. Technol. 41: 1060-1066 (2008)
  40. Yao J, Peng S, Xu J, Fang J. Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway. Biofactors 45: 616-626 (2019)
  41. Yoo H, Ku SK, Baek YD, Bae JS. Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm. Res. 63: 197-206 (2014) https://doi.org/10.1007/s00011-013-0689-x
  42. Yoo KM, Lee CH, Lee H, Moon B, Lee CY. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 106: 929-936 (2008) https://doi.org/10.1016/j.foodchem.2007.07.006
  43. Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic. Biol. Med. 37: 1683-1693 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.08.002
  44. Zhang Q, Su Y, Zhang J. Seasonal difference in antioxidant capacity and active compounds contents of Eucommia ulmoides oliver leaf. Molecules 18: 1857-1868 (2013) https://doi.org/10.3390/molecules18021857
  45. Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu Y, Wang Y. Formation of urban fine particulate matter. Chem. Rev. 115: 3803-3855 (2015) https://doi.org/10.1021/acs.chemrev.5b00067
  46. Zhang S, Yu Z, Xia J, Zhang X, Liu K, Sik A, Jin M. Anti-Parkinson's disease activity of phenolic acids from Eucommia ulmoides oliver leaf extracts and their autophagy activation mechanism. Food Funct. 11: 1425-1440 (2020) https://doi.org/10.1039/C9FO02288K
  47. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J. Agr. Food Chem. 49: 5165-5170 (2001) https://doi.org/10.1021/jf010697n
  48. Zhou Y, Liang M, Li W, Li K, Li P, Hu Y, Yang Z. Protective effects of Eucommia ulmoides Oliv. bark and leaf on amyloid βinduced cytotoxicity. Eviron. Toxicol. Pharmacol. 28: 342-349 (2009) https://doi.org/10.1016/j.etap.2009.05.012
  49. Zhu X, Ji X, Shou Y, Huang Y, Hu Y, Wang H. Recent advances in understanding the mechanisms of PM2.5-mediated neurodegenerative diseases. Toxicol. Lett. 329: 31-37 (2020) https://doi.org/10.1016/j.toxlet.2020.04.017
  50. Zhu MQ, Sun RC. Eucommia ulmoides oliver: A potential feedstock for bioactive products. J. Agric. Food Chem. 66: 5433-5438 (2018) https://doi.org/10.1021/acs.jafc.8b01312