DOI QR코드

DOI QR Code

The Regulation of LexA on UV-Induced SOS Response in Myxococcus xanthus Based on Transcriptome Analysis

  • Sheng, Duo-hong (State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University) ;
  • Wang, Ye (State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University) ;
  • Wu, Shu-ge (State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University) ;
  • Duan, Rui-qin (State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University) ;
  • Li, Yue-zhong (State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University)
  • Received : 2021.03.26
  • Accepted : 2021.05.21
  • Published : 2021.07.28

Abstract

SOS response is a conserved response to DNA damage in prokaryotes and is negatively regulated by LexA protein, which recognizes specifically an "SOS-box" motif present in the promoter region of SOS genes. Myxococcus xanthus DK1622 possesses a lexA gene, and while the deletion of lexA had no significant effect on either bacterial morphology, UV-C resistance, or sporulation, it did delay growth. UV-C radiation resulted in 651 upregulated genes in M. xanthus, including the typical SOS genes lexA, recA, uvrA, recN and so on, mostly enriched in the pathways of DNA replication and repair, secondary metabolism, and signal transduction. The UV-irradiated lexA mutant also showed the induced expression of SOS genes and these SOS genes enriched into a similar pathway profile to that of wild-type strain. Without irradiation treatment, the absence of LexA enhanced the expression of 122 genes that were not enriched in any pathway. Further analysis of the promoter sequence revealed that in the 122 genes, only the promoters of recA2, lexA and an operon composed of three genes (pafB, pafC and cyaA) had SOS box sequence to which the LexA protein is bound directly. These results update our current understanding of SOS response in M. xanthus and show that UV induces more genes involved in secondary metabolism and signal transduction in addition to DNA replication and repair; and while the canonical LexA-dependent regulation on SOS response has shrunk, only 5 SOS genes are directly repressed by LexA.

Keywords

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 31670076 and 31471183), National Key Research and Development Programs of China (Nos. 2018YFA0900400 and 2018YFA0901704) to YZL and Special National Project on the Investigation of Basic Resources of China (No. 2019FY100700), Key Research & Developmental Program of Shandong Province (No. 2019JZZY020308) to DHS.

References

  1. Radman M. 1975. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci. 5A: 355-367.
  2. Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. 2019. The SOS system: a complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 60: 368-384. https://doi.org/10.1002/em.22267
  3. Bertrand-Burggraf E, Hurstel S, Daune M, Schnarr M. 1987. Promoter properties and negative regulation of the uvrA gene by the LexA repressor and its amino-terminal DNA binding domain. J. Mol. Biol. 193: 293-302. https://doi.org/10.1016/0022-2836(87)90220-8
  4. Hanawalt PC. 2015. Historical perspective on the DNA damage response. DNA Repair (Amst) 36: 2-7. https://doi.org/10.1016/j.dnarep.2015.10.001
  5. Butala M, Zgur-Bertok D, Busby SJ. 2009. The bacterial LexA transcriptional repressor. Cell Mol. Life Sci. 66: 82-93. https://doi.org/10.1007/s00018-008-8378-6
  6. Bellio P, Mancini A, Di Pietro L, Cracchiolo S, Franceschini N, Reale S, 2020. Inhibition of the transcriptional repressor LexA: Withstanding drug resistance by inhibiting the bacterial mechanisms of adaptation to antimicrobials. Life Sci. 241: 117116. https://doi.org/10.1016/j.lfs.2019.117116
  7. Wade JT, Reppas NB, Church GM, Struhl K. 2005. Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev. 19: 2619-2630. https://doi.org/10.1101/gad.1355605
  8. Lesca C, Petit C, Defais M. 191. UV induction of LexA independent proteins which could be involved in SOS repair. Biochimie 73: 407-409. https://doi.org/10.1016/0300-9084(91)90107-C
  9. Battesti A, Majdalani N, Gottesman S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65: 189-213. https://doi.org/10.1146/annurev-micro-090110-102946
  10. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. 2004. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305: 1629-1631. https://doi.org/10.1126/science.1101630
  11. Perez-Capilla T, Baquero MR, Gomez-Gomez JM, Ionel A, Martin S, Blazquez J. 2005. SOS-independent induction of dinB transcription by beta-lactam-mediated inhibition of cell wall synthesis in Escherichia coli. J. Bacteriol. 187: 1515-1518. https://doi.org/10.1128/JB.187.4.1515-1518.2005
  12. Cook D, Carrington J, Johnson K, Hare J. 2020. Homodimerization and heterodimerization requirements of Acinetobacter baumannii SOS response coregulators UmuDAb and DdrR revealed by two-hybrid analyses. Can. J. Microbiol. 67: 358-371.
  13. Hare JM, Perkins SN, Gregg-Jolly LA. 2006. A constitutively expressed, truncated umuDC operon regulates the recA-dependent DNA damage induction of a gene in Acinetobacter baylyi strain ADP1. Appl. Environ. Microbiol. 72: 4036-4043. https://doi.org/10.1128/AEM.02774-05
  14. Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC. 2001. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158: 41-64. https://doi.org/10.1093/genetics/158.1.41
  15. Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, 2005. Genetic composition of the Bacillus subtilis SOS system. J. Bacteriol. 187: 7655-7666. https://doi.org/10.1128/JB.187.22.7655-7666.2005
  16. Erill I, Campoy S, Barbe J. 2007. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol. Rev. 31: 637-656. https://doi.org/10.1111/j.1574-6976.2007.00082.x
  17. Sancar GB, Sancar A, Little JW, Rupp WD. 1982. The uvrB gene of Escherichia coli has both lexA-repressed and lexA-independent promoters. Cell 28: 523-530. https://doi.org/10.1016/0092-8674(82)90207-0
  18. Campoy S, Fontes M, Padmanabhan S, Cortes P, Llagostera M, Barbe J. 2003. LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus. Mol. Microbiol. 49: 769-781. https://doi.org/10.1046/j.1365-2958.2003.03592.x
  19. Norioka N, Hsu MY, Inouye S, Inouye M. 1995. Two recA genes in Myxococcus xanthus. J. Bacteriol. 177: 4179-4182. https://doi.org/10.1128/jb.177.14.4179-4182.1995
  20. Sheng DH, Wang YX, Qiu M, Zhao JY, Yue XJ, Li YZ. 2020. Functional division between the RecA1 and RecA2 proteins in Myxococcus xanthus. Front. Microbiol. 11: 140. https://doi.org/10.3389/fmicb.2020.00140
  21. Walter BM, Cartman ST, Minton NP, Butala M, Rupnik M. 2015. The SOS response master regulator LexA is associated with sporulation, motility and biofilm formation in Clostridium difficile. PLoS One 10: e0144763. https://doi.org/10.1371/journal.pone.0144763
  22. Clerch B, Garriga X, Torrents E, Rosales CM, Llagostera M. 1996. Construction and characterization of two lexA mutants of Salmonella typhimurium with different UV sensitivities and UV mutabilities. J. Bacteriol. 178: 2890-2896. https://doi.org/10.1128/jb.178.10.2890-2896.1996
  23. Ramirez-Guadiana FH, Barajas-Ornelas Rdel C, Corona-Bautista SU, Setlow P, Pedraza-Reyes M. 2016. The RecA-dependent SOS response is active and required for processing of DNA damage during Bacillus subtilis sporulation. PLoS One 11: e0150348. https://doi.org/10.1371/journal.pone.0150348
  24. Ramirez-Guadiana FH, Del Carmen Barajas-Ornelas R, Ayala-Garcia VM, Yasbin RE, Robleto E, Pedraza-Reyes M. 2013. Transcriptional coupling of DNA repair in sporulating Bacillus subtilis cells. Mol. Microbiol. 90: 1088-1099. https://doi.org/10.1111/mmi.12417
  25. Quillardet P, Rouffaud MA, Bouige P. 2003. DNA array analysis of gene expression in response to UV irradiation in Escherichia coli. Res. Microbiol. 154: 559-572. https://doi.org/10.1016/S0923-2508(03)00149-9
  26. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, 2019. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87. https://doi.org/10.1093/nar/gkz310
  27. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47: D607-613. https://doi.org/10.1093/nar/gky1131
  28. Kobir A, Shi L, Boskovic A, Grangeasse C, Franjevic D, Mijakovic I. 2011. Protein phosphorylation in bacterial signal transduction. Biochim. Biophys. Acta 1810: 989-994. https://doi.org/10.1016/j.bbagen.2011.01.006
  29. Cozzone AJ. 1988. Protein phosphorylation in prokaryotes. Annu. Rev. Microbiol. 42: 97-125. https://doi.org/10.1146/annurev.mi.42.100188.000525
  30. Mijakovic I, Grangeasse C, Turgay K. 2016. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol. Rev. 40: 398-417. https://doi.org/10.1093/femsre/fuw003
  31. Muller AU, Imkamp F, Weber-Ban E. 2018. The mycobacterial LexA/RecA-independent DNA damage response is controlled by pafBC and the pup-proteasome system. Cell Rep. 23: 3551-3564. https://doi.org/10.1016/j.celrep.2018.05.073
  32. Julien B, Kaiser AD, Garza A. 2000. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 97: 9098-9103. https://doi.org/10.1073/pnas.97.16.9098
  33. Ueki T, Inouye S, Inouye M. 1996. Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene 183: 153-157. https://doi.org/10.1016/S0378-1119(96)00546-X
  34. Tzeng L, Ellis TN, Singer M. 2006. DNA replication during aggregation phase is essential for Myxococcus xanthus development. J. Bacteriol. 2006. 188: 2774-2779 https://doi.org/10.1128/JB.188.8.2774-2779.2006
  35. Peng R, Chen JH, Feng WW, Zhang Z, Yin J, Li ZS, 2017. Error-prone DnaE2 balances the genome mutation rates in Myxococcus xanthus DK1622. Front. Microbiol. 8: 122. https://doi.org/10.3389/fmicb.2017.00122

Cited by

  1. ImuA Facilitates SOS Mutagenesis by Inhibiting RecA-Mediated Activity in Myxococcus xanthus vol.87, pp.18, 2021, https://doi.org/10.1128/aem.00919-21
  2. Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related ‘Omics Studies vol.9, pp.10, 2021, https://doi.org/10.3390/microorganisms9102143