DOI QR코드

DOI QR Code

Biodegradation and Removal of PAHs by Bacillus velezensis Isolated from Fermented Food

  • Sultana, Omme Fatema (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Lee, Saebim (Probiotics Microbiome Convergence Center, Soonchunhyang University) ;
  • Seo, Hoonhee (Probiotics Microbiome Convergence Center, Soonchunhyang University) ;
  • Al Mahmud, Hafij (Probiotics Microbiome Convergence Center, Soonchunhyang University) ;
  • Kim, Sukyung (Probiotics Microbiome Convergence Center, Soonchunhyang University) ;
  • Seo, Ahyoung (Probiotics Microbiome Convergence Center, Soonchunhyang University) ;
  • Kim, Mijung (Probiotics Microbiome Convergence Center, Soonchunhyang University) ;
  • Song, Ho-Yeon (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
  • Received : 2021.04.15
  • Accepted : 2021.05.20
  • Published : 2021.07.28

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment. They are highly toxigenic and carcinogenic. Probiotic bacteria isolated from fermented foods were tested to check their ability to degrade and/or detoxify PAHs. Five probiotic bacteria with distinct morphologies were isolated from a mixture of 26 fermented foods co-cultured with benzo(a)pyrene (BaP) containing Bushnell Haas minimal broth. Among them, B. velezensis (PMC10) significantly reduced the abundance of BaP in the broth. PMC10 completely degraded BaP presented at a lower concentration in broth culture. B. velezensis also showed a clear zone of degradation on a BaP-coated Bushnell Haas agar plate. Gene expression profiling showed significant increases of PAH ring-hydroxylating dioxygenases and 4-hydroxybenzoate 3-monooxygenase genes in B. velezensis in response to BaP treatment. In addtion, both live and heat-killed B. velezensis removed BaP and naphthalene (Nap) from phosphate buffer solution. Live B. velezensis did not show any cytotoxicity to macrophage or human dermal fibroblast cells. Live-cell and cell-free supernatant of B. velezensis showed potential anti-inflammatory effects. Cell-free supernatant and extract of B. velezensis also showed free radical scavenging effects. These results highlight the prospective ability of B. velezensis to biodegrade and remove toxic PAHs from the human body and suggest that the biodegradation of BaP might be regulated by ring-hydroxylating dioxygenase-initiated metabolic pathway.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the "Regional Industry-based Organization Support Program" (Ref. No. P0001942) supervised by the Korea Institute for Advancement of Technology (KIAT). This study was also supported by Soonchunhyang University Research Fund. We want to thank all the lab members for their support during this study.

References

  1. Yousefi M, Shariatifar N, Tajabadi Ebrahimi M, Mortazavian AM, Mohammadi A, Khorshidian N, et al. 2019. In vitro removal of polycyclic aromatic hydrocarbons by lactic acid bacteria. J. Appl. Microbiol. 126: 954-964. https://doi.org/10.1111/jam.14163
  2. Okai M, Kihara I, Yokoyama Y, Ishida M, Urano N. 2015. Isolation and characterization of benzo [a] pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiol. Lett. 362: fnv143. https://doi.org/10.1093/femsle/fnv143
  3. Abou-Arab AAK, Salim A-B, Maher RA, El-Hendawy HH, Awad AA. 2010. Degradation of polycyclic aromatic hydrocarbons as affected by some lactic acid bacteria. J. Am. Sci. 6: 1237-1246.
  4. Kim K-H, Jahan SA, Kabir E, Brown RJC. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60: 71-80. https://doi.org/10.1016/j.envint.2013.07.019
  5. Siddens LK, Larkin A, Krueger SK, Bradfield CA, Waters KM, Tilton SC, et al. 2012. Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo [a] pyrene, dibenzo [def, p] chrysene and three environmental mixtures in the FVB/N mouse. Toxicol. Appl. Pharmacol. 264: 377-386. https://doi.org/10.1016/j.taap.2012.08.014
  6. Sowada J, Schmalenberger A, Ebner I, Luch A, Tralau T. 2014. Degradation of benzo [a] pyrene by bacterial isolates from human skin. FEMS Microbiol. Ecol. 88: 129-139. https://doi.org/10.1111/1574-6941.12276
  7. Program NT. 2000. Toxicology and carcinogenesis studies of naphthalene in F344/N rats. US Dep. Heal. Hum. Serv. Natl. Toxicol. Program, Washington, DC ., USA.
  8. Karami S, Boffetta P, Brennan P, Stewart PA, Zaridze D, Matveev V, et al. 2011. Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics. J. Occup. Environ. Med. 53: 218-223. https://doi.org/10.1097/JOM.0b013e31820a40a3
  9. Abdel-Shafy HI, Mansour MSM. 2016. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J. Pet. 25: 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011
  10. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, et al. 2013. Health benefits of probiotics: a review. ISRN Nutr. 2013: 481651. https://doi.org/10.5402/2013/481651
  11. Rajendran R, Ohta Y. 1998. Binding of heterocyclic amines by lactic acid bacteria from miso, a fermented Japanese food. Can J. Microbiol. 44: 109-115. https://doi.org/10.1139/w97-133
  12. Abou-Arab AAK, Abou-Bakr S, Maher RA, El-Hendawy HH, Awad AA. 2015. Persistence of some lactic acid bacteria as affected by polycyclic aromatic hydrocarbons. J. Microbiol. Exp. 2: 1-6.
  13. Dominici L, Villarini M, Trotta F, Federici E, Cenci G, Moretti M. 2014. Protective effects of probiotic Lactobacillus rhamnosus IMC501 in mice treated with PhIP. J. Microbiol. Biotechnol. 24: 371-378. https://doi.org/10.4014/jmb.1309.09072
  14. Rafter J. 2004. The effects of probiotics on colon cancer development. Nutr. Res. Rev. 17: 277-284. https://doi.org/10.1079/NRR200484
  15. Boffetta P, Jourenkova N, Gustavsson P. 1997. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8: 444-472. https://doi.org/10.1023/A:1018465507029
  16. Karimi B, Habibi M, Esvand M. 2015. Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic-aerobic continuous flow combined bioreactor. J. Environ. Health Sci. Eng. 13: 26. https://doi.org/10.1186/s40201-015-0175-1
  17. Lyu Y, Zheng W, Zheng T, Tian Y. 2014. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9: e101438. https://doi.org/10.1371/journal.pone.0101438
  18. Bogardt AH, Hemmingsen BB. 1992. Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation of petroleum-contaminated sites. Appl. Environ. Microbiol. 58: 2579-2582. https://doi.org/10.1128/aem.58.8.2579-2582.1992
  19. Oyehan TA, Al-Thukair AA. 2017. Isolation and characterization of PAH-degrading bacteria from the Eastern Province, Saudi Arabia. Mar. Pollut. Bull. 115: 39-46. https://doi.org/10.1016/j.marpolbul.2016.11.007
  20. Kim S, Seo H, Mahmud H Al, Islam MI, Sultana OF, Lee Y, et al. 2020. Melanin Bleaching and melanogenesis inhibition effects of Pediococcus acidilactici PMC48 isolated from Korean Perilla Leaf Kimchi. J. Microbiol. Biotechnol. 30: 1051-1059. https://doi.org/10.4014/jmb.2003.03007
  21. Petti CA. 2008. Interpretive criteria for identification of bacteria and fungi by DNA target sequencing. Clinical and Laboratory Standards Institute.
  22. Shen Q, Shang N, Li P. 2011. In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians. Curr. Microbiol. 62: 1097-1103. https://doi.org/10.1007/s00284-010-9827-7
  23. Kim M, Chun J. 2014. 16S rRNA gene-based identification of bacteria and archaea using the EzTaxon server. Methods Microbiol. 41: 61-74. https://doi.org/10.1016/bs.mim.2014.08.001
  24. Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 2761-2764. https://doi.org/10.1128/JCM.01228-07
  25. Tatusov RL, Galperin MY, Natale DA, Koonin E V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36. https://doi.org/10.1093/nar/28.1.33
  26. Lee I, Kim YO, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
  27. Aubin GG, Bemer P, Kambarev S, Patel NB, Lemenand O, Caillon J, et al. 2016. Propionibacteriumnamnetense sp. nov., isolated from a human bone infection. Int. J. Syst. Evol. Microbiol. 66: 3393-3399. https://doi.org/10.1099/ijsem.0.001204
  28. Mahmud HA, Seo H, Kim S, Islam MI, Nam K-W, Cho H-D, et al. 2017. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production. BMC Complement. Altern. Med. 17: 1-8. https://doi.org/10.1186/s12906-016-1505-2
  29. Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard Mater. 169: 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137
  30. Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi P V, et al. 2011. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 29: 324-357. https://doi.org/10.1080/10590501.2011.629974
  31. Poursafa P, Moosazadeh M, Abedini E, Hajizadeh Y, Mansourian M, Pourzamani H, et al. 2017. A systematic review on the effects of polycyclic aromatic hydrocarbons on cardiometabolic impairment. Int. J. Prev. Med. 8: 19. https://doi.org/10.4103/ijpvm.IJPVM_144_17
  32. Samanta SK, Singh O V, Jain RK. 2002. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 20: 243-248. https://doi.org/10.1016/S0167-7799(02)01943-1
  33. Fijan S. 2014. Microorganisms with claimed probiotic properties: an overview of recent literature. Int. J. Environ. Res. Public Health 11: 4745-4767. https://doi.org/10.3390/ijerph110504745
  34. Yun SH, Choi C-W, Lee S-Y, Lee YG, Kwon J, Leem SH, et al. 2014. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. PLoS One 9: e90812. https://doi.org/10.1371/journal.pone.0090812
  35. Sangsila A, Faucet-Marquis V, Pfohl-Leszkowicz A, Itsaranuwat P. 2016. Detoxification of zearalenone by Lactobacillus pentosus strains. Food Control 62: 187-192. https://doi.org/10.1016/j.foodcont.2015.10.031
  36. Ismail A, Levin RE, Riaz M, Akhtar S, Gong YY, de Oliveira CAF. 2017. Effect of different microbial concentrations on binding of aflatoxin M1 and stability testing. Food Control 73: 492-496. https://doi.org/10.1016/j.foodcont.2016.08.040
  37. Sarlak Z, Rouhi M, Mohammadi R, Khaksar R, Mortazavian AM, Sohrabvandi S, et al. 2017. Probiotic biological strategies to decontaminate aflatoxin M1 in a traditional Iranian fermented milk drink (Doogh). Food Control 71:152-159. https://doi.org/10.1016/j.foodcont.2016.06.037
  38. Mahmud H Al, Seo H, Kim S, Islam MI, Nam K-W, Cho H-D, et al. 2017. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production. BMC Complement. Altern. Med. 17: 279. https://doi.org/10.1186/s12906-017-1786-0
  39. De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, et al. 2018. Probiotic cell-free supernatants exhibited antiinflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evid. Based Complement. Altern. Med. 2018: 1756308. https://doi.org/10.1155/2018/1756308
  40. Nimse SB, Pal D. 2015. Free radicals, natural antioxidants, and their reaction mechanisms. Rsc. Adv. 5: 27986-28006. https://doi.org/10.1039/C4RA13315C
  41. Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J. 2015. Probiotics as potential antioxidants: a systematic review. J. Agric. Food Chem. 63: 3615-3626. https://doi.org/10.1021/jf506326t
  42. El-Nawawy MA, El-Malkey W, Aumara IE. 2009. Production and properties of antioxidative fermented probiotic beverages with natural fruit juices. Ann. Agric. Sci. 54: 121-135.
  43. Grady EN, MacDonald J, Ho MT, Weselowski B, McDowell T, Solomon O, et al. 2019. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiol. 19: 5. https://doi.org/10.1186/s12866-018-1380-8
  44. Silva F de J, Ferreira LC, Campos VP, Cruz-Magalhaes V, Barros AF, Andrade JP, et al. 2019. Complete genome sequence of the biocontrol agent Bacillus velezensis UFLA258 and its comparison with related species: diversity within the commons. Genome Biol. Evol. 11: 2818-2823. https://doi.org/10.1093/gbe/evz208
  45. Choi J, Nam J, Seo M-H. 2021. Complete genome sequence of Bacillus velezensis NST6 and comparison with the species belonging to operational group B. amyloliquefaciens. Genomics 113: 380-386. https://doi.org/10.1016/j.ygeno.2020.12.011
  46. Liu H, Zeng Q, Wang W, Zhang R, Yao J. 2020. Complete genome sequence of Bacillus velezensis strain AL7, a biocontrol agent for suppression of cotton Verticillium wilt. Microbiol. Resour. Announc. 9: e015959-19.

Cited by

  1. Antimicrobial Effects of Potential Probiotics of Bacillus spp. Isolated from Human Microbiota: In Vitro and In Silico Methods vol.9, pp.8, 2021, https://doi.org/10.3390/microorganisms9081615