DOI QR코드

DOI QR Code

Coproduction of Enzymes and Beta-Glucan by Aspergillus oryzae Using Solid-State Fermentation of Brown Rice

  • Ji, Su Bin (Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University) ;
  • Ra, Chae Hun (Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University)
  • Received : 2021.05.07
  • Accepted : 2021.06.02
  • Published : 2021.07.28

Abstract

The effect of medium composition on enzyme and β-glucan production by Aspergillus oryzae KCCM 12698 was investigated. Brown rice, rice bran, nitrogen, and ascorbic acid are key components of the synthetic medium used in liquid-state fermentation. To determine the optimal concentrations of these components for enzyme and β-glucan production, we conducted one factor at a time experiments, which showed that the optimal concentrations were 30 g/l brown rice, 30 g/l rice bran, 10 g/l soytone, and 3 g/l ascorbic acid. Pretreatment of brown rice for 60 min prior to inoculation enhanced fungal biomass, while increasing the production of enzymes and β-glucan using solid-state fermentation. Maximum fungal biomass of 0.76 mg/g, amylase (26,551.03 U/g), protease (1,340.50 U/g), and β-glucan at 9.34% (w/w) were obtained during fermentation. Therefore, solid-state fermentation of brown rice is a process that could enhance yield and overall production of enzymes and β-glucan for use in various applications.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2019R1G1A1007247).

References

  1. Verni M, Rizzello CG, Coda R. 2019. Fermentation biotechnology applied to cereal industry by-products: nutritional and functional insights. Front. Nutr. 6: 42. https://doi.org/10.3389/fnut.2019.00042
  2. Qureshi AS, Khushk I, Ali CH, Chisti Y, Ahmad A, Majeed H. 2016. Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatal. Agric. Biotechnol. 8: 146-151. https://doi.org/10.1016/j.bcab.2016.09.006
  3. Chimata MK, Sasidhar P, Challa S. 2010. Production of extracellular amylase from agricultural residues by a newly isolated Aspergillus species in solid state fermentation. Afr. J. Biotechnol. 9: 5162-5169.
  4. Chutmanop J, Chuichulcherm S, Chisti Y, Srinophakun P. 2008. Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J. Chem. Technol. 83: 1012-1018.
  5. van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. 2002. Properties and applications of starchconverting enzymes of the α-amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
  6. Riquelme M, Aguirre J, Bartnicki-Garcia S, Braus GH, Feldbrugge M, Fleig U, et al. 2018. Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol. Mol. Biol. Rev. 82: 1-47.
  7. Mille-Lindblom C, Von Wachenfeldt E, Tranvik LJ. 2004. Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. J. Microbiol. Methods 59: 253-262. https://doi.org/10.1016/j.mimet.2004.07.010
  8. Pasanen AL, Yli-Pietila K, Pasanen P, Kalliokoski P, Tarhanen J. 1999. Ergosterol content in various fungal species and biocontaminated building materials. Appl. Environ. Microbiol. 65: 138-142. https://doi.org/10.1128/AEM.65.1.138-142.1999
  9. Chiocchio VM, Matkovic L. 2011. Determination of ergosterol in cellular fungi by HPLC. A modified technique. J. Argent. Chem. Soc. 98: 10-15.
  10. Klamer M, Baath E. 2004. Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9. Soil Biol. Biochem. 36: 57-65. https://doi.org/10.1016/j.soilbio.2003.08.019
  11. Martin F, Delaruelle C, Hilbert JL. 1990. An improved ergosterol assay to estimate fungal biomass in ectomycorrhizas. Mycol. Res. 94: 1059-1064. https://doi.org/10.1016/S0953-7562(09)81333-6
  12. Jung TD, Shin GH, Kim JM, Choi SI, Lee JH, Lee SJ, et al. 2017. Comparative analysis of γ-oryzanol, β-glucan, total phenolic content and antioxidant activity in fermented rice bran of different varieties. Nutrients 9: 571-582. https://doi.org/10.3390/nu9060571
  13. Bacic A, Stone BA, 1981. Chemistry and organization of aleurone cell wall components from wheat and barley. Funct. Plant Biol. 8: 475-495. https://doi.org/10.1071/PP9810475
  14. Lazaridou A, Biliaderis CG. 2007. Molecular aspects of cereal beta-glucan functionality: physical properties, technological applications and physiological effects. J. Cereal Sci. 46: 101-118. https://doi.org/10.1016/j.jcs.2007.05.003
  15. Mansor A, Ramli MS, Rashid NYA, Samat N, Lani MN, Sharifudin SA, et al. 2019. Evaluation of selected agri-industrial residues as potential substrates for enhanced tannase production via solid-state fermentation. Biocatal. Agric. Biotechnol. 20: 1012-1016.
  16. Batra A, Saxena RK. 2005. Potential tannase from the genera Aspergillus and Penicillium. Process Biochem. 40: 1553-1557. https://doi.org/10.1016/j.procbio.2004.03.003
  17. Irfan M, Nadeem M, Syed Q. 2014. One-factor-at-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 7: 317-326. https://doi.org/10.1016/j.jrras.2014.04.004
  18. Beni A, Soki E, Lajtha K, Fekete I. 2014. An optimized HPLC method for soil fungal biomass determination and its application to a detritus manipulation study. J. Microbiol. Methods 103: 124-130. https://doi.org/10.1016/j.mimet.2014.05.022
  19. Qureshi AS, Khushk I, Ali CH, Chisti Y, Ahmad A, Majeed H. 2016. Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatal. Agric. Biotechnol. 8: 146-151. https://doi.org/10.1016/j.bcab.2016.09.006
  20. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  21. Yoo HU, Ko MJ, Chung MS. 2020. Hydrolysis of beta-glucan in oat flour during subcritical-water extraction. Food Chem. 308: 125670. https://doi.org/10.1016/j.foodchem.2019.125670
  22. Ellaiah P, Adinarayana K, Bhavani Y, Padmaja P, Srinivasulu B. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38: 615-620. https://doi.org/10.1016/S0032-9592(02)00188-7
  23. Sumantha A, Deepa P, Sandhya C, Szakacs G, Soccol CR, Pandey A. 2006. Rice bran as a substrate for proteolytic enzyme production. Braz. Arch. Biol. Technol. 49: 843-851. https://doi.org/10.1590/S1516-89132006000600019
  24. Katyama M, Yoshimi N, Yamada Y, Sakata K, Kuno T, Yoshida K, et al. 2002. Preventive effect of fermented brown rice and rice bran against colon carcinogenesis in male F344 rats. Oncol. Rep. 9: 817-822.
  25. Shin HY, Kim SM, Lee JH, Lim ST. 2019. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 272: 235-241. https://doi.org/10.1016/j.foodchem.2018.07.174
  26. Kammoun R, Naili B, Bejar S. 2008. Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresour. Technol. 99: 5602-5609. https://doi.org/10.1016/j.biortech.2007.10.045
  27. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A. 2007. Alpha amylase production by Aspergillus oryzae employing solid-state fermentation. J. Sci. Ind. Res. 66: 621-626.
  28. Yasui M, Oda K, Masuo S, Hosoda S, Katayama T, Maruyama J, et al. 2020. Invasive growth of Aspergillus oryzae in rice koji and increase of nuclear number. Fungal Biol. Biotechnol. 7: 8. https://doi.org/10.1186/s40694-020-00099-9
  29. Pandey A, Sevalkumar P, Soccol CR, Nigam P. 1999. Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162.
  30. Chancharoonpong C, Hsieh PC, Sheu SC. 2012. Effect of different combinations of soybean and wheat bran on enzyme production from Aspergillus oryzae S. Procedia APCBEE 2: 68-72. https://doi.org/10.1016/j.apcbee.2012.06.013
  31. Ali SS, Vidhale NN. 2013. Protease production by Fusarium oxysporum in solid-state fermentation using rice bran. Am. J. Microbiol. Res. 1: 45-47. https://doi.org/10.12691/ajmr-1-3-2
  32. Han JA, Lim ST. 2009. Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice. Cereal Chem. 86: 100-105. https://doi.org/10.1094/CCHEM-86-1-0100
  33. Yu L, Turner M, Fitzgerald M, Stokes JR, Witt T. 2017. Review of the effects of different processing technologies on cooked and convenience rice quality. Trends Food Sci. Technol. 59: 124-138. https://doi.org/10.1016/j.tifs.2016.11.009