DOI QR코드

DOI QR Code

Optimization Process of Type 4 Composite Pressure Vessels Using Genetic and Simulated Annealing Algorithm

유전 알고리즘 및 담금질 기법을 활용한 Type 4 복합재료 압력용기 최적화 프로세스

  • SONG, GWINAM (Department of Mechanical Engineering, Gachon University) ;
  • KIM, HANSANG (Department of Mechanical Engineering, Gachon University)
  • 송귀남 (가천대학교 기계공학과) ;
  • 김한상 (가천대학교 기계공학과)
  • Received : 2021.08.20
  • Accepted : 2021.08.25
  • Published : 2021.08.30

Abstract

In this study, we conducted a design optimization of the Type 4 composite pressure vessels to enhance the pressure-resistant performance of the vessels while keeping the thickness of the composite layer. The design variables for the optimization were the stacking angles of the helical layers of the vessels to improve the performance. Since the carbon fibers are expensive material, it is desirable to reduce the use of the carbon fibers by applying an optimal design of the composite pressure vessel. The structural analysis and optimization process for the design of Type 4 composite pressure vessels were carried out using a commercial finite element analysis software, Abaqus and a plug-in for automated simulation, Isight, respectively. The optimization results confirmed the performance and safety of the optimized Type 4 composite pressure vessels was enhanced by 12.84% compared to the initial design.

Keywords

Acknowledgement

이 논문은 2018년도 가천대학교 교내연구비 지원에 의한 결과이다(GCU-2018-0684). 본 연구는 산업 통상 자원부(MOTIE)와 한국 에너지 기술 평가원(KETEP)의 지원을 받아 연구한 과제이다(NO. 20203010040010).

References

  1. SAE International, "Composite materials handbook", SAE International on behalf of CMH-17, a division of Wichita State University, USA, 2012.
  2. Dassault system, "Abaqus documentation 2016", 2016. Retrieved from http://130.149.89.49:2080/v2016/index.html.
  3. A. Onder, O. Sayman, T. Dogan, and N. Tarakcioglu, "Burst failure load of composite pressure vessels", CompositeStructures, Vol. 89, No. 1, 2009, pp. 159-166, doi: https://doi.org/10.1016/j.compstruct.2008.06.021.
  4. Z. Hashin , "Failure criteria for unidirectional fiber composites", J. Appl. Mech, Vol. 47, No. 2, 1980, pp. 329-334, doi: https://doi.org/10.1115/1.3153664.
  5. Dassault system, "Abaqus WCM user manual", 2013. Retrieved from https://dl-manual.com/doc/user-manual2o29pxq51nv0.
  6. Dassault system, "Isight getting started guide (release 4.0)", 2009. Retrieved from https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/SIMULIA/RESOURCES/DS_SIMULIA_IsightV40_GettingStartedGuide.pdf.
  7. S. Koussios, "Filament winding : a unified approach", DUP Science, the Netherlands, 2004. Retrieved from https://repository.tudelft.nl/islandora/object/uuid%3A41b62a9a-c15e-4026-b600-66ca4701941c.
  8. T. H. Lim, J. I. Byun, M. S. Cho, and H. S. Kim, "Design and structural analysis of type 4 composite pressure vessel fitted in spare tire well", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 6, 2018, pp. 570-577. doi: https://doi.org/10.7316/KHNES.2018.29.6.570.
  9. S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, "Optimization by simulated annealing", Science, Vol. 220, No. 4598, 1983, pp. 671-680, doi: https://doi.org/10.1126/science.220.4598.671.
  10. V. Alcantar, S. M. Aceves, E. Ledesma, S. Ledesma, and E. Aguilera, "Optimization of type 4 composite pressure vessels using genetic algorithms and simulated annealing", Hydrogen Energy, Vol. 42, No. 24, 2017, pp. 15770-15781, doi: https://doi.org/10.1016/j.ijhydene.2017.03.032.
  11. T. H. LIM, "Structural analysis of type 3 & 4 composite pressure vessels using genetic algorithm and simulated annealing", Gachon Unviersity, 2019, pp. 42-43. Retrieved from http://www.riss.kr/link?id=T15362002.
  12. Korea Gas Safety Corporation, "Facility/technical/inspection code for manufacture of nomnetal liner composite cylinders for high-pressure gases", Korea Gas Safety Corporation, AC418, 2017, pp.1-37. Retrieved from https://cyber.kgs.or.kr/kgscode.codeSearch.view.ex.do?onEngYn=F&pubFldCd=&pubMid=&pubCd=AC418_170210&stDayY=2008&stDayM=01&etDayY=2018&etDayM=06.