DOI QR코드

DOI QR Code

소규모 분산에너지자원의 효율적인 관리를 위한 전력중개거래시스템

The Power Brokerage Trading System for Efficient Management of Small-Scale Distributed Energy-Resources

  • 양수영 (부산대학교 사물인터넷연구센터) ;
  • 김요한 ((주)엘시스 기업부설연구소) ;
  • 이우 ((주)아이웍스 기술개발부) ;
  • 김원중 (순천대학교 컴퓨터공학과)
  • 투고 : 2021.06.29
  • 심사 : 2021.08.17
  • 발행 : 2021.08.31

초록

최근 정부에서 역점 적으로 추진하고 있는 '재생에너지 3020', '그린뉴딜', '2050 탄소중립', 'K-RE100' 정책에 의해 재생에너지 관련 발전설비들이 급증하고 있다. 재생에너지 설비들은 대부분 소규모이고, 분산되어 있어서 효율적인 관리가 어렵고, 1MW 미만의 소규모 분산자원은 판매량 제한, 거래회피 등으로 시장참여에 큰 어려움을 겪고 있다. 특히, 재생에너지의 간헐성 때문에 전력망의 안정성 저하에도 큰 영향을 끼치고 있다. 정부에서는 '소규모 분산자원 중개거래'를 통해서 변동성 및 간헐성 문제를 해결하고, 이종의 대량 소규모 분산자원들의 계통 자원화와 수용성 확대를 추구하고 있다. 본 연구에서는 AI에 기반한 발전량 예측 모델을 분산자원 중개거래 시스템에 적용하여 최적의 운영 솔루션을 제시하고, 에너지신사업 시장 개척의 기반 플랫폼으로 활용될 수 있도록 하고자 한다.

Recently, renewable energy-related power generation facilities have been surging due to the government's "Renewable Energy 3020", "Green New Deal", "2050 Carbon Neutrality" and "K-RE100" policies. Most renewable energy facilities are small and distributed, making it difficult to manage efficiently, and small distributed resources less than 1MW are having a hard time with participating in the market due to the limited sales and avoidance of trading. In particular, the intermittency of renewable energy has a significant impact on the stability of the power grid. The government is seeking to address volatility and intermittency issues through 'small distributed resource brokerage trading, and to expand the systematic resourceization and acceptability of heterogeneous large and small distributed resources. In this work, we intend to apply an AI-based power generation prediction model to a distributed resource brokerage trading system so that it can be utilized as a foundation platform for pioneering new energy business markets.

키워드

과제정보

이 논문은 2021년 순천대학교 교연비 사업에 의하여 연구되었음.

참고문헌

  1. Y. Lee and J. Kim, "A study on institutional improvement measures to vitalize energy prosumers," Report, Nov. 2016.
  2. B. Lee, K. Kim, and N. Choi, "Power Interruption Cost Calculation based on Value-based Methodology," J. of the Korea Institute of Electrocnic Communication Sciences, vol. 16, no. 2, 2021, pp. 293-300.
  3. H. Saboori, M. Mohammadi, and R. Taghe, "Virtual Power Plant (VPP), Definition, Concept, Components and Types," 2011 Asia-Pacific Power and Energy Engineering Conference, 2011, pp. 1-4
  4. J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. Martinez-De-Pison, and F. Antonanzas-Torres, "Review of Photovoltaic Power Forecasting," J. of Solar Energy, vol. 136, 2016, pp. 78-111. https://doi.org/10.1016/j.solener.2016.06.069
  5. Y. Cho, S. Baek, W. Choi, and D. Jeong "A Development of VPP Platform for the Efficient Utilization of Distributed Renewable Energy Resources," J. of Korea Association of Information Systems, vol. 27, no. 2. pp. 95-114, 2018.
  6. J. Ahn, "A study on the revitalization of a supply-type virtual power plant (VPP): Focusing on the use of small-scale power brokerage," Report, Dec. 2019.
  7. J. Jung and C. Song, "Development of Solar Power Output Prediction Method using Big Data Processing Technic," J. of the Korea Society of Systems Engineering, vol. 16, no. 1, 2020, pp. 58-67. https://doi.org/10.14248/JKOSSE.2020.16.1.058
  8. S. Kim and Y. Song, "Blockchain Based Energy Trading Model for Energy Prosumer," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 9, no. 3, 2019, pp. 769-776.
  9. J. Choi and H. Choi, "Prediction of Wind Power Generation for Calculation of ESS Capacity using Multi-Layer Perceptron," J. of the Korea Institute of Electrocnic Communication Sciences, vol. 16, no. 2, 2021, pp. 319-328.
  10. P. Lombardi, M. Powalko, M., and K. Rudion, "Optimal Operation of a Virtual Power Plant," IEEE Power & Energy Society General Meeting(PES'09), 2009, pp. 1-6.