DOI QR코드

DOI QR Code

Silicon-Based Anode with High Capacity and Performance Produced by Magnesiothermic Coreduction of Silicon Dioxide and Hexachlorobenzene

  • 투고 : 2020.11.24
  • 심사 : 2021.02.01
  • 발행 : 2021.08.28

초록

Silicon (Si) has been considered as a promising anode material because of its abundant reserves in nature, low lithium ion (Li+) intercalation/de-intercalation potential (below 0.5 V vs. Li/Li+) and high theoretical capacity of 4200 mA h/g. In this paper, we prepared a silicon-based (Si-based) anode material containing a small amount of silicon carbide by using magnesiothermic coreduction of silica and hexachlorobenzene. Because of good conductivity of silicon carbide, the cycle performance of the silicon-based anode materials containing few silicon carbide is greatly improved compared with pure silicon. The raw materials were formulated according to a silicon-carbon molar ratio of 10:0, 10:1, 10:2 and 10:3, and the obtained products were purified and tested for their electrochemical properties. After 1000 cycles, the specific capacities of the materials with silicon-carbon molar ratios of 10:0, 10:1, 10:2 and 10:3 were still up to 412.3 mA h/g, 970.3 mA h/g, 875.0 mA h/g and 788.6 mA h/g, respectively. Although most of the added carbon reacted with silicon to form silicon carbide, because of the good conductivity of silicon carbide, the cycle performance of silicon-based anode materials was significantly better than that of pure silicon.

키워드

과제정보

This work is supported by the Doctor Foundation of Heze University (Grant No. XY20BS01).

참고문헌

  1. B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, S. Koller, J. Power Sources, 2011, 196(5), 2889-2892. https://doi.org/10.1016/j.jpowsour.2010.10.081
  2. M. Gu, Y. He, J. Zheng, C. Wang, Nano Energy, 2015, 17, 366-383. https://doi.org/10.1016/j.nanoen.2015.08.025
  3. J. G. Ryu, D. K. Hong, H. W. Lee, S. J. Park, Nano Res., 2017, 10, 3970-4002. https://doi.org/10.1007/s12274-017-1692-2
  4. S. K. Jeong, X. Li, J. Zheng, P. Yan, R. Cao, H. J. Jung, C. Wang, J. Liu, J. G. Zhang, J. Power Sources, 2016, 329, 323-329. https://doi.org/10.1016/j.jpowsour.2016.08.089
  5. Q. Si, K. Hanai, N. Imanishi, M. Kubo, A. Hirano, Y. Takeda, O.Yamamoto, J. Power Sources, 2009, 189(1), 761-765. https://doi.org/10.1016/j.jpowsour.2008.08.007
  6. Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater., 2017, 7(23), 1700715. https://doi.org/10.1002/aenm.201700715
  7. S. Huang, L. Z. Cheong, D. Wang, C. Shen, ACS Appl. Mater. Interfaces, 2017, 9(28), 23672-23678. https://doi.org/10.1021/acsami.7b04361
  8. L . Yan, J. Liu, Q. Wang, M. Sun, Z. Jiang, C. Liang, F. Pan, Z. Lin, ACS Appl. Mater. Interfaces, 2017, 9(44), 38159-38164. https://doi.org/10.1021/acsami.7b10873
  9. Yaolin Xu, Ellie Swaans, Sibo Chen, Shibabrata Basak, Peter Paul R. M. L. Harks, Bo Peng, Henny W. Zandbergen, Dana M. Borsa, Fokko M. Mulder, Nano Energy, 2017, 38, 477-485. https://doi.org/10.1016/j.nanoen.2017.06.011
  10. R. V., Salvatierra, A. R. O. Raji, S. K. Lee, Y. S. Ji, L. Li, J. M. Tour, Adv. Energy Mater., 2016, 6(24), 1600918. https://doi.org/10.1002/aenm.201600918
  11. W. Wang, L. Gu, H. Qian, M. Zhao, X. Ding, X. Peng, J. Sha, Y. Wang, J. Power Sources, 2016, 307, 410-415. https://doi.org/10.1016/j.jpowsour.2016.01.010
  12. J . Ryu, D . Hong, S. Choi, S. Park, ACS Nano, 2016, 10(2), 2843-2851. https://doi.org/10.1021/acsnano.5b07977
  13. X. Li, P. Yan, B. W. Arey, W. Luo, Xiulei Ji, C. Wang, J. Liu, J. G. Zhang, Nano Energy, 2016, 20, 68-75. https://doi.org/10.1016/j.nanoen.2015.12.011
  14. M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu, C. Zhou, Nano Res., 2013, 6(3), 174-181. https://doi.org/10.1007/s12274-013-0293-y
  15. N. Dimov, S. Kugino, M. Yoshio, Electrochim. Acta, 2003, 48 (11), 1579-1587. https://doi.org/10.1016/S0013-4686(03)00030-6
  16. W. J. Yu, C. Liu, L. Zhang, P. X. Hou, F. Li, B. Zhang, H. M. Cheng, Adv. Sci., 2016, 3(10), 1600113. https://doi.org/10.1002/advs.201600113
  17. H. Chen, B. Zhang, X. Wang, P. Y. Dong, H. Tong, J. C. Zheng, W. J. Yu, J. F. Zhang, ACS Appl. Mater. Interfaces, 2018, 10(4), 3590-3595. https://doi.org/10.1021/acsami.7b16402
  18. M. A. Al-Maghrabi, Junji Suzuki, R. J. Sanderson, V. L. Chevrier, R. A. Dunlap, J. R. Dahn, J. Electrochem. Soc., 2013, 160(9), A1587. https://doi.org/10.1149/2.115309jes
  19. E. J. Park, H. D. Yoo, J. W. Lee, M. S. Park, Y. J. Kim, H. S. Kim, ACS Nano, 2015, 9, 7690-7696. https://doi.org/10.1021/acsnano.5b03166
  20. E. J. Park, J. H. Kim, D. J. Chung, M. S. Park, H. S. Kim, J. H. Kim, ChemSusChem, 2016, 9(19), 2754-2758. https://doi.org/10.1002/cssc.201600798
  21. J. W. Lee, J. H. Moon, S. A. Han, J. Y. Kim, V. Malgras, Y. U. Heo, H. S. Kim, S. M. Lee, H. K. Liu, S. X. Dou, Y. Yamauchi, M. S. Park, J. H. Kim, ACS Nano, 2019, 13(7), 9607-9619. https://doi.org/10.1021/acsnano.9b04725
  22. J. W. Lee, S. A. Han, S. M. Lee, M. S. Park, J. H. Kim, Composites, Part B, 2019, 174, 107024. https://doi.org/10.1016/j.compositesb.2019.107024
  23. M. Nangir, A. Massoudi, Mater. Today: Proc., 2020.