CONSTRUCTION OF AN HV-BE-ALGEBRA FROM A BE-ALGEBRA BASED ON "BEGINS LEMMA"

R. NAGHIBI^a, S. M. ANVARIYEH^{b,*} AND S. MIRVAKILI^c

ABSTRACT. In this paper, first we introduce the new class of HV-BE-algebra as a generalization of a (hyper) BE-algebra and prove some basic results and present several examples. Then, we construct the HV-BE-algebra associated to a BE-algebra (namely BL-BE-algebra) based on "Begins lemma" and investigate it.

1. INTRODUCTION

The class of BCK-algebras was introduced in 1978 by Y. Imai and K. Iseki [17]. Then in 1998, Y. B. Jun et al. [18] introduced a new notion, called a BH-algebra, which is a generalization of a BCK-algebra, i.e., x * x = 0; x * 0 = x and x * y = 0 and y * x = 0 imply x = y for any $x, y \in X$. In 1999, J. Neggers et al. [22] introduced the notion of a *d*-algebra which is another generalization of a BCK-algebra. Also, in 2007, H. S. Kim and Y. H. Kim [20] introduced the notion of a BE-algebra, as a generalization of a BCK-algebra, and using the notion of a upper set they gave an equivalent condition of a filter in a BE-algebra.

In 2012 and 2013, A. Rezaei et al. [30, 31] studied commutative ideals in BEalgebras and gave some properties. Also, they showed a commutative implicative BE-algebra is equivalent to a commutative self distributive BE-algebra. Moreover, they proved every Hilbert algebra is a self distributive BE-algebra and a commutative self distributive BE-algebra is a Hilbert algebra and showed one can not remove the conditions of commutativity and self distributivity. In [1], S. S. Ahn et al. introduced the notion of a terminal section of a BE-algebra and gave some characterization of

 $\bigodot 2021$ Korean Soc. Math. Educ.

Received by the editors November 05, 2020. Accepted August 17, 2021.

²⁰¹⁰ Mathematics Subject Classification. 06F35-14L17.

 $Key\ words\ and\ phrases.$ BE-algebra, BE-hyperalgebra, End
s lemma, HV-BE-algebra, BL-BE-algebra.

^{*}Corresponding author.

a commutative BE-algebra in terms of lattice order relations and terminal sections. Recently, R. A. Borzooei et al. introduced the notion of a pseudo BE-algebra which is a generalization of a BE-algebra. They defined the basic concepts of a pseudo subalgebra and a pseudo filter and proved that under some conditions, a pseudo subalgebra can be a pseudo filter [2].

The algebraic hyperstructure theory as a generalization of the algebraic structure was first introduced in 1934, by French mathematician F. Marty at the 8th congress of Scandinavian mathematicians [21]. A hypergroupoid is a non-empty set H with a hyperoperation \circ defined on H, that is, a mapping of $H \times H$ into the family of nonempty subsets of H. If $(x, y) \in H \times H$, its image under \circ is denoted by $x \circ y$. If A, Bare non-empty subsets of H then $A \circ B$ is given by $A \circ B = \bigcup \{x \circ y \mid x \in A, y \in B\}$.

A hypergroupoid (H, \circ) is called a *semihypergroup* if $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in H$ and it is called a *hypergroup* if it is a semihypergroup and $a \circ H = H \circ a = H$ for all $a \in H$. For instance, if $x \circ y = \{x, y\}$ for all $x, y \in H$, then (H, \circ) is a hypergroup. Afterward, because of many applications of this theory in applied sciences, many authors study in this context. Some reviews of the hyperstructure theory can be found in [6, 8, 38]. Corsini's book on hyperstructures [4] points out their applications in fuzzy and rough set theory, cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs. In [19], Y. B. Jun et al. applied the hyperstructure to a BCK-algebra and introduced the notion of a hyper BCK-algebra which is a generalization of the BCK-algebra and investigated some related properties. A. Radfar et al. defined the notion of a hyper BE-algebra, some types of hyper filters in this structure and described the relationship between them [29].

An *HV*-structure as a generalization of the hyperstructure was first introduced by Vougiouklis at the Forth AHA congress in 1990 [39]. There are some important reasons for introducing and investigation of so called HV-structures, that is an HVgroup, an HV-ring, and so on, which are defined from the well known classes of hyperstructures in a certain simple way. The idea consists in replacing some axioms, such as the associative law, the distributive law, and others by the corresponding weak ones. The hyperstructure (H, \circ) is called an *HV*-semigroup if $a \circ (b \circ c) \cap (a \circ$ $b) \circ c \neq \phi$ for all $a, b, c \in H$. The hyperstructure (H, \circ) is called an *HV*-group if (H, \circ) is an HV-semigroup and $a \circ H = H \circ a = H$ for all $a \in H$. Since a quotient of an HV-structure with respect to a fundamental equivalence relation $(\beta^*, \gamma^*, \epsilon^*, \text{ ets.})$ is always an ordinary structure and this is why it is called an HV-structure. Many

authors have published papers relating different "HV-structures". In particular, a variety of HV-structures theory have been defined such as: partial abelian HVmonoids [9], HV-semigroups [33], HV-groups [34], HV-rings [35], HV-modules [10] and HV-vector spaces [37]. In [7] Davvaz surveyed the theory of HV-structures.

The relation of ordered sets and algebraic hyperstructures was first studied by Vougiouklis in 1987 [36]. Then the connection between hyperstructures and ordered sets has been analyzed by many researchers such as Corsini [5], Omidi and Davvaz [28] Hoskova [16], Heidari and Davvaz [14], and others. One special aspect of this issue, known as EL-hyperstructures, which was first introduced by Chavlina in [3] are hypercompositional structures constructed from a partially (semi)group using a construction known as Ending lemma or Ends lemma. Lots of papers regarding this topic have been written by number of authors like Hoskova [15, 16], Novak [23, 26, 27], Rosenberg [32], and others [11, 12, 13]. Among them, Novak in [23] studied subhyperstructures of EL-hyperstructures and in [24] he discussed some interesting results of important elements in this family of hyperstructures. Then, in [24] Novak studied some basic properties of EL-hyperstructures like invertibility, normality, property of being closed and ultra closed, regularity, and etc. Now, there arises a natural question that "Is it possible to go further to stronger hyperstructure like BE-algebras, B-algebras, etc?"

In this paper, first we define the concept of an HV-BE-algebra and prove some basic results, then we apply "Ends lemma" on a BE-algebra and achieve the new HV-BE-algebra associated to it.

2. Basic Definitions and Results

The notion of a *BE-algebra*, as a generalization of a *BCK-algebra*, was introduced by H. S. Kim and Y. H. Kim [20]. The aim of this section is to introduce an HV-BE-algebra, give some examples, and find some of their properties. Let X be a nonempty set, $* : X \times X \to X$ be a binary operation and "1" be constant. The triple (X, *, 1) is called a *BE-algebra* if for all $x \in X$ we have x * x = 1, x * 1 = 1 and 1 * x = x, where a relation " \leq " is defined by $x \leq y$ if and only if x * y = 1 and for all $x, y, z \in X$, we have x * (y * z) = y * (x * z). A nonempty subset Y of a BE-algebra (X, *, 1) is said to be a BE-subalgebra of X, if $1 \in Y$ and $x * y \in Y$, for all $x, y \in Y$. A BE-algebra (X, *, 1) is said to be *commutative*, if (x * y) * y = (y * x) * x for any $x, y \in X$ [20]. **Definition 2.1** ([29]). Let H be a nonempty set, $\circ : H \times H \to \wp^*(H)$ be a hyperoperation and "1" be constant. The triple $(H, \circ, 1)$ is called a *hyper BE-algebra* if for all $x, y, z \in H$ we have $x \leq 1, x \leq x, x \circ (y \circ z) = y \circ (x \circ z), x \in 1 \circ x$ and $1 \leq x$ implies x = 1, where the relation " \leq " is defined by $x \leq y$ if and only if $1 \in x \circ y$. For any two nonempty subsets X and Y of $H, X \leq Y$ if and only if there exist $x \in X$ and $y \in Y$ such that $x \leq y$. A nonempty subset S of a hyper BE-algebra H is said to be a hyper BE-subalgebra of H, if $1 \in S$ and $x \circ y \subseteq S$, for all $x, y \in S$.

Example 1. Let $H = \{1, a, b\}$ be a set with the following table:

0	1	a	b
1	{1}	$\{a, b\}$	$\{b\}$
a	{1}	$\{1, a\}$	$\{1,b\}$
b	{1}	$\{1, a, b\}$	{1}

Then it follows that $(H, \circ, 1)$ is a hyper BE-algebra.

Example 2. It is obvious that $\{1\}$ and H are hyper BE-subalgebras of a hyper BE-algebra of H. In Example 1, $\{1, a\}$ is not a hyper BE-subalgebra of the hyper BE-algebra $(H, \circ, 1)$. Also, $\{1\}$ and $\{1, b\}$ are hyper BE-subalgebras of the hyper BE-algebra $(H, \circ, 1)$.

Definition 2.2. $(H, \circ, 1)$ is called an *HV-BE-algebra*, if it satisfies the following axioms:

(HVBE1) $x \le 1, x \le x$, (HVBE2) $x \circ (y \circ z) \cap y \circ (x \circ z) \ne \phi$, (HVBE3) $x \in 1 \circ x$, (HVBE4) $1 \le x$ implies x = 1, for all $x, y, z \in H$, where the relation " \le " is defined by $x \le y$ if and only if $1 \in x \circ y$. For any two

nonempty subsets X and Y of $H, X \leq Y$ if and only if $Y \in X \circ Y$. For any two such that $x \leq y$. An HV-BE-algebra $(H, \circ, 1)$ is said to be *commutative* if

$$(x \circ y) \circ y \cap (y \circ x) \circ x \neq \phi$$

for all $x, y \in H$.

It is obvious that a hyper BE-algebra is an HV-BE-algebra.

Example 3. Let $H = \{1, a, b, c\}$ and define a hyperoperation " \circ " as follows:

0	1	a	b	с
1	{1}	$\{a\}$	$\{b\}$	$\{c\}$
a	{1}	{1}	$\{b, c\}$	$\{b,c\}$
b	{1}	{1}	{1}	$\{c\}$
C	{1}	{1}	{1}	{1}

Then by examining the HV-BE-algebra's properties we conclude that $(H, \circ, 1)$ is an HV-BE-algebra. Since $a \circ (b \circ c) = \{b, c\}$ and $b \circ (a \circ c) = \{1, c\}$, then $(H, \circ, 1)$ is not a hyper BE-algebra.

Example 4. (i) Let $H = \{1, a\}$. Define hyperoperations " \circ_1 " and " \circ_2 " as follows:

\circ_1	1	a	\circ_2	1	a
1	$\{1, a\}$	$\{a\}$	1	$\{1, a\}$	$\{a\}$
a	{1}	{1}	a	$\{1, a\}$	{1}

Then $1 \in x \circ_1 1, 1 \in x \circ_1 x, 1 \in x \circ_2 1$ and $1 \in x \circ_2 x$ for all $x \in H$. By examining the other properties of this algebra, we conclude $(H, \circ_1, 1)$ and $(H, \circ_2, 1)$ are HV-BE-algebras. Since $1 \circ_1 (a \circ_1 a) = \{1, a\}$ and $a \circ_1 (1 \circ_1 a) = \{1\}$, then $(H, \circ_1, 1)$ is not a hyper BE-algebra. Also, $(H, \circ_2, 1)$ is an HV-BE-algebra. Since $1 \circ_2 (a \circ_2 a) = \{1, a\}$ and $a \circ_2 (1 \circ_2 a) = \{1\}$, then $(H, \circ_2, 1)$ is not a hyper BE-algebra.

(ii) Let $H = \{1, a, b\}$. Define hyperoperations " \circ_3 " to " \circ_6 " as follows:

°3	1	a	b		°4	1	a	b
1	{1}	$\{a,b\}$	$\{b\}$		1	{1}	$\{a\}$	$\{b\}$
a	$\{1,b\}$	{1}	$\{1, a, b\}$		a	$\{1,b\}$	{1}	$\{1, a, b\}$
b	{1}	$\{1,b\}$	$\{1,b\}$]	b	{1}	$\{1,b\}$	$\{1,b\}$
	1	0	1		0.5	1	~	1
05	1	a	0		°6	1	a	0
1	$\{1\}$	$\frac{a}{\{a\}}$	b {b}		$\frac{06}{1}$	$\{1\}$	$a \\ \{a\}$	$ \begin{array}{c} b\\ \{b\} \end{array} $
$\begin{array}{c} 0_{5} \\ 1 \\ a \end{array}$	$1 \\ \{1\} \\ \{1\} \\ \{1\}$	()	$b \\ \{b\} \\ \{1, b\}$		$\frac{1}{a}$	$1 \\ \{1\} \\ \{1\}$		$ \begin{array}{c} b\\ \{b\}\\ \{1,a\} \end{array} $

Then by calculating the properties of this algebra, it follows that (H, \circ_3) , $(H, \circ_4), (H, \circ_5)$ and (H, \circ_6) are HV-BE-algebras which are not hyper BE-algebras.

(iii) Let $H = \{1, 2, ...\}$ and the operation " \circ " be defined as follows:

$$x \circ y = \begin{cases} \{1\} & \text{if } y \le x\\ \{h \in H | h \ge y\} & \text{otherwise,} \end{cases}$$

for any $x, y \in H$. Then it can be verified that (H, \circ) is an HV-BE-algebra. Since $1 \circ (2 \circ 2) = \{1\}$ and $2 \circ (1 \circ 2) = \{1, 3, 4, ...\}$, then $(H, \circ, 1)$ is not a hyper BE-algebra.

Example 5.	(i) Let $H =$	$= \{1, a, b\}$	and define a	hyperoperation	"o"	as follows:
------------	---------------	-----------------	--------------	----------------	-----	-------------

0	1	a	b
1	$\{1\}$	$\{a, b\}$	$\{b\}$
a	$\{1,b\}$	{1}	$\{1, a, b\}$
b	{1}	$\{1,b\}$	$\{1,b\}$

Then it can be checked that $(H, \circ, 1)$ is a commutative HV-BE-algebra.

(ii) In Example 3, the HV-BE-algebra $(H, \circ, 1)$ is not commutative, since $(a \circ b) \circ b \cap (b \circ a) \circ a = \phi$.

Theorem 2.3. Let $(H, \circ, 1)$ be an HV-BE-algebra. Then for all $x, y, z \in H$ and for all nonempty subsets A and B of H the following statements hold:

- (i) $x \circ (y \circ z) \leq y \circ (x \circ z)$ and $y \circ (x \circ z) \leq x \circ (y \circ z)$, (ii) $A \circ (B \circ C) \cap B \circ (A \circ C) \neq \phi$, (iii) $A \circ (B \circ C) \leq B \circ (A \circ C)$ and $B \circ (A \circ C) \leq A \circ (B \circ C)$, (iv) $x \leq y \circ y$, (v) $x \leq x \circ x$, (vi) $A \leq B \circ B$, (vii) $A \leq A \circ A$, (vii) $A \leq A$, (ix) $1 \leq A$ implies $1 \in A$, (x) $A \leq B$ if and only if $1 \in A \circ B$, (xi) $A \subseteq 1 \circ A$, (xii) $A \subseteq B$ implies $A \leq B$,
- (xiii) $1 \in x \circ (x \circ 1)$.

Proof. (i) By (HVBE2), there exists $d \in x \circ (y \circ z) \cap y \circ (x \circ z)$. Then there exists $d \in x \circ (y \circ z)$ and $d \in y \circ (x \circ z)$ such that $d \leq d$.

- (ii) There exist $a \circ (b \circ c) \subseteq A \circ (B \circ C)$ and $b \circ (a \circ c) \subseteq B \circ (A \circ C)$ for all $a \in A, b \in B$ and $c \in C$. Then by (HVBE2), there exists $d \in a \circ (b \circ c) \cap b \circ (a \circ c)$ and so there exists $d \in A \circ (B \circ C) \cap B \circ (A \circ C)$, i.e., $A \circ (B \circ C) \cap B \circ (A \circ C) \neq \phi$.
- (iii) By (ii), there exists $d \in A \circ (B \circ C) \cap B \circ (A \circ C)$. Then there exists $d \in A \circ (B \circ C)$ and $d \in B \circ (A \circ C)$ such that $d \leq d$.

- (iv) By (HVBE1), $1 \in x \circ 1 \subseteq x \circ (y \circ y)$ and so $1 \in x \circ (y \circ y)$, i.e., $x \leq y \circ y$.
- (v) If y = x, by (iv), we have $x \le x \circ x$.
- (vi) There exist $a \in A$ and $b \circ b \subseteq B \circ B$ such that $a \leq b \circ b$ by (iv), i.e., $A \leq B \circ B$.
- (vii) There exist $a \in A$ and $a \circ a \subseteq A \circ A$ such that $a \leq a \circ a$ by (v), i.e., $A \leq A \circ A$.
- (viii) By (HVBE1), there exists $a \in A$ such that $a \leq a$. It means $A \leq A$.
- (ix) Let $1 \le A$. It means that there exists $a \in A$ such that $1 \le a$. By (HVBE4), a = 1 and so $1 \in A$.
- (x)

$$\begin{split} A &\leq B \Leftrightarrow \exists a \in A, \exists b \in B \quad s.t. \quad a \leq b \\ \Leftrightarrow \exists a \in A, \exists b \in B \quad s.t. \quad 1 \in a \circ b \\ \Leftrightarrow 1 \in \bigcup_{a \in A, b \in B} a \circ b \\ \Leftrightarrow 1 \in A \circ B. \end{split}$$

- (xi) Since $1 \circ A = \bigcup_{a \in A} 1 \circ a$ and $a \in 1 \circ a$, we have $A \subseteq 1 \circ A$.
- (xii) Let $x \in A$, then $x \in B$. Hence $1 \in x \circ x$, which implies $1 \in A \circ B$. By (x), we have $A \leq B$.

(xiii) By (HVBE1), $1 \in x \circ 1 \subseteq x \circ (x \circ 1)$ and so $1 \in x \circ (x \circ 1)$.

Theorem 2.4. Let $(H_1, \circ_1, 1_1)$ and $(H_2, \circ_2, 1_2)$ be HV-BE-algebras and $H = H_1 \times H_2$. We define a hyperoperation " \circ " on H as follows,

$$(a_1, b_1) \circ (a_2, b_2) = (a_1 \circ_1 a_2, b_1 \circ_2 b_2)$$

for all $(a_1, b_1), (a_2, b_2) \in H$, where for $A \subseteq H_1$ and $B \subseteq H_2$ by (A, B), we mean $(A, B) = \{(a, b) \mid a \in A, b \in B\}, 1 = (1_1, 1_2)$. Then $(H, \circ, 1)$ is an HV-BE-algebra, and it is called the HV-BE-product of H_1 and H_2 .

Proof. Let $(x, y) \in H$. By H_1 VBE1 and H_2 VBE1, $1_1 \in x \circ_1 1_1$ and $1_2 \in y \circ_2 1_2$. Since $(x, y) \circ (1_1, 1_2) = (x \circ_1 1_1, y \circ_2 1_2), 1 \in (x, y) \circ 1$. Then $(x, y) \leq 1$. The proof of $(x, y) \leq (x, y)$ is obtained by $x \leq x$ and $y \leq y$. Therefore HVBE1 is valid.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in H$. Then

$$(x_1, y_1) \circ ((x_2, y_2) \circ (x_3, y_3)) = (x_1, y_1) \circ (x_2 \circ_1 x_3, y_2 \circ_2 y_3)$$
$$= \bigcup \{ (x_1, y_1) \circ (a, b) \mid a \in x_2 \circ_1 x_3, b \in y_2 \circ_2 y_3 \}$$

$$= \bigcup \{ (x_1 \circ_1 a, y_1 \circ_2 b \mid a \in x_2 \circ_1 x_3, b \in y_2 \circ_2 y_3 \}$$

= $(x_1 \circ_1 (x_2 \circ_1 x_3), y_1 \circ_2 (y_2 \circ_2 y_3)).$

By H_1 VBE2 and H_2 VBE2, $x_1 \circ_1 (x_2 \circ_1 x_3) \cap x_2 \circ_1 (x_1 \circ_1 x_3) \neq \phi$, $y_1 \circ_2 (y_2 \circ_2 y_3) \cap y_2 \circ_2 (y_1 \circ_2 y_3) \neq \phi$ and so $(x_1 \circ_1 (x_2 \circ_1 x_3), y_1 \circ_2 (y_2 \circ_2 y_3)) \cap (x_2 \circ_1 (x_1 \circ_1 x_3), y_2 \circ_2 (y_1 \circ_2 y_3)) \neq \phi$. On the other hand $(x_2 \circ_1 (x_1 \circ_1 x_3), y_2 \circ_2 (y_1 \circ_2 y_3)) = (x_2, y_2) \circ (x_1 \circ_1 x_3, y_1 \circ_2 y_3) = (x_2, y_2) \circ ((x_1, y_1) \circ (x_3, y_3))$. Therefore $(x_1, y_1) \circ ((x_2, y_2) \circ (x_3, y_3)) \cap (x_2, y_2) \circ ((x_1, y_1) \circ (x_3, y_3)) \neq \phi$ and HVBE2 is valid.

Let $(x, y) \in H$. By H_1 VBE3 and H_2 VBE3, $x \in 1_1 \circ_1 x, y \in 1_2 \circ_2 y$. Then $(x, y) \in (1_1 \circ_1 x, 1_2 \circ_2 y) = (1_1, 1_2) \circ (x, y) = 1 \circ (x, y)$. Therefore $(x, y) \in 1 \circ (x, y)$ and HVBE3 is valid.

Let $(x, y) \in H$ and $(1_1, 1_2) \leq (x, y)$. By H_1 VBE4 and H_2 VBE4, $1_1 \leq x$ and $1_2 \leq y$ implies $x = 1_1$ and $y = 1_2$. Then $(x, y) = (1_1, 1_2) = 1$ and so HVBE4 is valid. Therefore $(H, \circ, 1)$ is an HV-BE-algebra.

Example 6. Consider two HV-BE-algebras $(H, \circ_3, 1)$ and $(H, \circ_4, 1)$ in Example 4. By calculating the properties of the HV-BE-product, we conclude $(H \times H, \circ, (1, 1))$ with the following table is an HV-BE-algebra of $(H, \circ_3, 1)$ and $(H, \circ_4, 1)$.

0	(1, 1)	(1, a)	(1, b)	(a, 1)	(a,a)	(a,b)	(b, 1)	(b,a)	(b,b)
(1,1)	$\{(1,1)\}$	$\{(1,a)\}$	$\{(1,b)\}$	A	В	C	$\{(b,1)\}$	$\{(b,a)\}$	$\{(b,b)\}$
(1,a)	D	$\{(1,1)\}$	E	F	A	G	H	$\{(b,1)\}$	Ι
(1,b)	$\{(1,1)\}$	D	D	A	F	F	$\{(b,1)\}$	H	Н
(a,1)	J	K	L	$\{(1,1)\}$	$\{(1,a)\}$	$\{(1,b)\}$	M	N	0
(a,a)	P	J	Q	D	$\{(1,1)\}$	E	R	M	S
(a,b)	J	P	P	$\{(1,1)\}$	D	D	M	R	R
(b, 1)	$\{(1,1)\}$	$\{(1,a)\}$	$\{(1,b)\}$	J	K	L	J	K	L
(b,a)	D	$\{(1,1)\}$	E	P	J	Q	P	J	Q
(b,b)	$\{(1,1)\}$	D	D	J	P	P	J	P	P

where $A = \{(a, 1), (b, 1)\}, B = \{(a, a), (b, a)\}, C = \{(a, b), (b, b)\}, D = \{(1, 1), (1, b)\}, E = \{(1, 1), (1, a), (1, b)\}, F = \{(a, 1), (b, 1), (a, b), (b, b)\}, G = \{(a, 1), (b, 1), (a, a), (b, a), (a, b), (b, b)\}, H = \{(b, 1), (b, b)\}, I = \{(b, 1), (b, a), (b, b)\}, J = \{(1, 1), (b, 1)\}, K = \{(1, a), (b, a)\}, L = \{(1, b), (b, b)\}, M = \{(1, 1), (a, 1), (b, 1)\}, N = \{(1, a), (a, a), (b, a)\}, O = \{(1, b), (a, b), (b, b)\}, P = \{(1, 1), (b, 1), (1, b), (b, b)\}, Q = \{(1, 1), (b, 1), (1, a), (a, a), (b, a), (1, b), (a, b), (b, b)\}, R = \{(1, 1), (a, 1), (b, 1), (1, b), (b, b)\}$ and $S = \{(1, 1), (a, 1), (b, 1), (1, b), (a, b), (b, b)\}$.

Theorem 2.5. Let $(H_1, \circ_1, 1)$ and $(H_2, \circ_2, 1)$ be HV-BE-algebras such that $H_1 \cap H_2 = \{1\}$, $H = H_1 \cup H_2$ and $x \circ_2 y \cap y \circ_2 x \neq \phi$, for all $x, y \in H_2$. Then $(H, \circ, 1)$ is

an HV-BE-algebra, where the hyperoperation " \circ " on H is defined as follows:

$$x \circ y := \begin{cases} x \circ_1 y & \text{if } x, y \in H_1, \\ x \circ_2 y & \text{if } x, y \in H_2, \\ \{t|t=x \text{ or } t=y \text{ and } t \in H_2\} \text{ otherwise,} \end{cases}$$

for all $x, y \in H$.

Proof. (1) If $x, y \in H_1$ or H_2 , then $(H, \circ, 1)$ is an HV-BE-algebra. (2) If $x \in H_1$ and $y \in H_2$. Then HVBE1, HVBE3 and HVBE4 is valid, Since $(H_1, \circ_1, 1)$ is an HV-BE-algebra. For checking HVBE2, we have two states:

- (i) Let $z \in H_1$. Then $x \circ (y \circ z) \cap y \circ (x \circ z) \neq \phi$ and HVBE2 is valid.
- (ii) Let $z \in H_2$. Then $x \circ (y \circ z) \cap y \circ (x \circ z) \neq \phi$ and HVBE2 is valid.

(3) If $x \in H_2$ and $y \in H_1$. The proof is similar to (2).

Definition 2.6. A nonempty subset S of an HV-BE-algebra $(H, \circ, 1)$ is said to be an HV-BE-subalgebra of H, if $1 \in S$ and $x \circ y \subseteq S$, for all $x, y \in S$.

Example 7. (i) Let $H = \{1, a, b\}$. Define a hyperoperation " \circ_1 " as follows:

°1	1	a	b
1	{1}	$\{a\}$	$\{b\}$
a	{1}	{1}	$\{a,b\}$
b	$\{1,b\}$	{1}	{1}

Then by examining the properties of the HV-BE-algebra, it follows that (H, ∘, 1) is an HV-BE-algebra and S = {1, a} is an HV-BE-subalgebra of H.
(ii) Let H = {1, a, b, c}. Define a hyperoperation "∘₂" on H as follows:

°2	1	a	b	с
1	{1}	$\{a\}$	$\{b\}$	$\{c\}$
a	{1}	{1}	$\{b,c\}$	$\{b,c\}$
b	{1}	{1}	{1}	$\{c\}$
c	{1}	{1}	{1}	{1}

Then by checking the properties of the HV-BE-algebra it follows that $(H, \circ_2, 1)$ is an HV-BE-algebra and $S = \{1, b, c\}$ is an HV-BE-subalgebra of H.

Example 8. Let $H = \{1, a, b, c, d\}$ be a set. Then we can check that $(H, \circ, 1)$ with the following table is an HV-BE-algebra.

0	1	a	b	c	d
1	{1}	$\{a,b\}$	$\{b\}$	$\{c\}$	$\{d\}$
a	$\{1,b\}$	{1}	$\{1, a, b\}$	$\{c\}$	$\{d\}$
b	{1}	$\{1,b\}$	$\{1,b\}$	$\{c\}$	$\{d\}$
c	{1}	$\{c\}$	$\{c\}$	{1}	$\{1, c, d\}$
d	{1}	$\{d\}$	$\{d\}$	{1}	{1}

Then they can be verified that $S = \{1, a, b\}$ is an HV-BE-subalgebra of H, but $T = \{1, a, b, d\}$ is not an HV-BE-subalgebra of H since $d \circ (a \circ a) = 1$ and $a \circ (d \circ a) = d$.

Remark 1. By Theorem 2.5, we can see the HV-BE-algebra $(H, \circ, 1)$ in Example 8 is obtained from two HV-BE-algebras as follows:

°1	1	a	b		°2	1	c	d
1	{1}	$\{a, b\}$	$\{b\}$		1	{1}	$\{c\}$	$\{d\}$
a	$\{1,b\}$	{1}	$\{1, a, b\}$	-	c	{1}	{1}	$\{c,d\}$
b	{1}	$\{1,b\}$	$\{1,b\}$		d	{1}	{1}	{1}

3. Some Types of HV-BE-algebras

Radfar and et. al. in [29] introduced some types of hyper BE-algebras. In this section, we introduce them for HV-BE-algebras and give an example for each of them.

Definition 3.1. We say an HV-BE-algebra is:

- (i) a row HV-BE-algebra (briefly, an R-HV-BE-algebra), if $1 \circ x = \{x\}$, for all $x \in H$,
- (ii) a column HV-BE-algebra (briefly, a C-HV-BE-algebra), if $x \circ 1 = \{1\}$, for all $x \in H$,
- (iii) a diagonal HV-BE-algebra (briefly, a D-HV-BE-algebra), if $x \circ x = \{1\}$, for all $x \in H$,
- (iv) a thin HV-BE-algebra (briefly, a T-HV-BE-algebra), if it is an R-HV-BEalgebra and a C-HV-BE-algebra (or an RC-HV-BE-algebra),
- (v) a very thin HV-BE-algebra (briefly, a V-HV-BE-algebra), if it is an R-HV-BE-algebra, a C-HV-BE-algebra and a D-HV-BE-algebra (or an RCD-HV-BE-algebra).
- (vi) a *CD-HV-BE-algebra*, if it is a C-HV-BE-algebra and a D-HV-BE-algebra.

Example 9. (i) In Example 4, $(H, \circ_4, 1)$ is an R-HV-BE-algebra.

(ii) Let $H = \{1, a, b\}$.	Define hyperoperations	" \circ_1 " to	"°6"	as follows:
------------------------------	------------------------	------------------	------	-------------

\circ_1 1 a b	\circ_2 1 a b
$1 \{1\} \{a\} \{a,b\}$	$1 \{1\} \{a\} \{a,b\}$
$a \{1\} \{1\} \{1, a, b\}$	$a \{1,b\} \{1\} \{1,a,b\}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$b \mid \{1\} \mid \{1\} \mid \{1\}$
\circ_3 1 a b	\circ_4 1 a b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c }\hline 1 & \{1\} & \{a\} & \{b\} \\\hline \end{array}$
$a \{1\} \{1\} \{1, a, b\}$	$a \{1\} \{1\} \{1, a, b\}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
\circ_5 1 a b	\circ_6 1 a b
$\begin{array}{ c c c c }\hline 1 & \{1\} & \{a\} & \{b\} \\\hline \end{array}$	$\begin{array}{ c c c c }\hline 1 & \{1\} & \{a\} & \{a,b\} \\\hline \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$a \{1\} \{1\} \{1, a, b\}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Then they can be checked that $(H, \circ_1, 1)$ is a C-HV-BE-algebra, $(H, \circ_2, 1)$ is a D-HV-BE-algebra, $(H, \circ_3, 1)$ is a T-HV-BE-algebra, $(H, \circ_4, 1)$ is a V-HV-BE-algebra, $(H, \circ_5, 1)$ is an RD-HV-BE-algebra and $(H, \circ_6, 1)$ is a CD-HV-BE-algebra.

Theorem 3.2. Let H be a D-HV-BE-algebra. Then

- (i) there exists $a \in 1 \circ x$ such that $1 \in x \circ a$,
- (*ii*) $x \circ 1 \cap y \circ (x \circ y) \neq \phi$,
- (iii) $x \circ 1 \cap 1 \circ (x \circ 1) \neq \phi$.
- *Proof.* (i) By Definition 3.1, $\{1\} = 1 \circ 1 = 1 \circ (x \circ x)$ and by (HVBE2), $1 \in x \circ (1 \circ x)$. Then there exists $a \in 1 \circ x$ such that $1 \in x \circ a$.
 - (ii) By (HVBE2), $y \circ (x \circ y) \cap x \circ (y \circ y) \neq \phi$ and by Definition 3.1, $x \circ (y \circ y) = x \circ 1$. Then $x \circ 1 \cap y \circ (x \circ y) \neq \phi$.
 - (iii) By (HVBE2), $1 \circ (x \circ 1) \cap x \circ (1 \circ 1) \neq \phi$ and by Definition 3.1, $x \circ (1 \circ 1) = x \circ 1$. Then $x \circ 1 \cap 1 \circ (x \circ 1) \neq \phi$.

Theorem 3.3. Let H be a CD-HV-BE-algebra. Then

 $(i) \ 1 \in x \circ (y \circ x),$

(ii)
$$z \in y \circ x$$
 implies $x \leq z$, for all $x, y, z \in H$.

Proof. (i) By Definition 3.1,
$$y \circ (x \circ x) = y \circ 1 = \{1\}$$
 and by (HVBE2), $1 \in x \circ (y \circ x)$.

(ii) By (i), $1 \in x \circ z$ for some $z \in y \circ x$, then $x \leq z$.

4. BL-BE-Algebras

Can we arrive to hyper BE-algebras (HV-BE-algebras) from BE-algebras based on "Ends lemma"? In the following theorem, we are going to answer this question by changing it.

Theorem 4.1. Let (X, *, 1) be a BE-algebra. Then the binary hyperoperation \bullet : $X \times X \to \wp^*(X)$ defined by

 $x \bullet y = (x * y]_{\leq}, \text{ for all } x, y \in X,$

is an HV-BE-algebra. Moreover, if the BE-algebra (X, *, 1) is commutative, then the HV-BE-algebra $(X, \bullet, 1)$ is commutative.

Proof. Let $x \in X$. First, we show that (HVBE1) is valid. Since $x \cdot 1 = (x \cdot 1]_{\leq} = \{t \in X \mid t \leq x \cdot 1\}$, then $1 \in x \cdot 1$ and so $x \leq 1$. Also, we have $x \cdot x = (x \cdot x]_{\leq} = \{t \in X \mid t \leq x \cdot x\}$, then $1 \in x \cdot x$ and so $x \leq x$. Then, we show that (HVBE2) is valid. We have $x \cdot (y \cdot z) = \{x \cdot t \mid t \in y \cdot z\} = \{x \cdot t \mid t \leq y \cdot z\} = \{t' \in X \mid t' \leq x \cdot t, t \leq y \cdot z\}$. Then there exist $x \cdot (y \cdot z) \in x \cdot (y \cdot z)$ and $y \cdot (x \cdot z) \in y \cdot (x \cdot z)$. Since $x \cdot (y \cdot z) = y \cdot (x \cdot z)$, we have $x \cdot (y \cdot z) \cap y \cdot (x \cdot z) \neq \phi$. Now we check that (HVBE3) is valid. Since $1 \cdot x = (1 \cdot x]_{\leq} = \{t \in X \mid t \leq 1 \cdot x\}$, then $x \in 1 \cdot x$. Finally for checking (HVBE4), let $1 \leq x$. Since $1 \in 1 \cdot x = (1 \cdot x]_{\leq} = \{t \in X \mid t \leq x\}$, we have $1 \leq x$ and so $1 \cdot x = 1$. On the other hand, $1 \cdot x = x$. Therefore x = 1.

Suppose that (x * y) * y = (y * x) * x. Then $(x \bullet y) \bullet y = \{t \bullet y \mid t \le x * y\} = \{t' \in X \mid t' \le t * y, t \le x * y\}$. Therefore, $(x * y) * y \in (x \bullet y) \bullet y$ and similarly $(y * x) * x \in (y \bullet x) \bullet x$. Since the BE-algebra (X, *, 1) is commutative, we have $(x \bullet y) \bullet y \cap (y \bullet x) \bullet x \neq \phi$ and the HV-BE-algebra $(H, \bullet, 1)$ constructed in this way is commutative.

The HV-BE-algebra $(X, \bullet, 1)$ constructed in this way, we call the associated HV-BE-algebra to the BE-algebra (X, *, 1) or "Begins lemma" based on HV-BE-algebras, or BL-BE-algebras for short.

Example 10. Let $X = \{1, a\}$ be a set with the following table:

*	1	a
1	1	a
a	1	1

Then it is easy to see that (X, *, 1) is a BE-algebra and $(X, \bullet, 1)$ is a BL-BE-algebra with the following:

•	1	a
1	X	$\{a\}$
a	X	X

Example 11. Let $X := \{1, a, b, c, d, 0\}$ be a set with the following table:

*	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then (X, *, 1) is a BE-algebra [20]. We can check that $(X, \bullet, 1)$ is a commutative BL-BE-algebra with the following table:

•	1	a	b	С	d	0
1	X	$\{a, b, d, 0\}$	$\{b,0\}$	$\{c, d, 0\}$	$\{d,0\}$	$\{0\}$
a	X	X	$\{a, b, d, 0\}$	$\{c, d, 0\}$	$\{c, d, 0\}$	$\{d,0\}$
b	X	X	X	$\{c, d, 0\}$	$\{c, d, 0\}$	$\{c, d, 0\}$
c	X	$\{a, b, d, 0\}$	$\{b,0\}$	X	$\{a, b, d, 0\}$	$\{b,0\}$
d	X	X	$\{a, b, d, 0\}$	X	X	$\{a, b, d, 0\}$
0	X	X	X	X	X	X

Theorem 4.2. Let $(X, \bullet, 1)$ be a BL-BE-algebra. Then for any $x, y \in X$ and for all nonempty subsets A and B of X the following statements holds:

(i) $x \bullet (y \bullet y) = X$, (ii) $x \bullet (x \bullet x) = X$, (iii) $A \bullet (B \bullet B) = X$, (iv) $A \bullet (A \bullet A) = X$, (v) $A \bullet A = X$, (vi) $x \bullet (x \bullet 1) = X$. *Proof.* It is straightforward.

Theorem 4.3. Let $(X_1, \bullet_1, 1_1)$ and $(X_2, \bullet_2, 1_2)$ be BL-BE-algebras and $X = X_1 \times X_2$. We define a hyperoperation " \bullet " on X as follows,

 $(x_1, y_1) \bullet (x_2, y_2) = (x_1 \bullet_1 x_2, y_1 \bullet_2 y_2)$

for all $(x_1, y_1), (x_2, y_2) \in H$, where for $A \subseteq X_1$ and $B \subseteq X_2$ by (A, B) we mean $(A, B) = \{(a, b) \mid a \in A, b \in B\}, 1 = (1_1, 1_2)$. Then $(X, \bullet, 1)$ is a BL-BE-algebra, and it is called the BL-BE-product of X_1 and X_2 .

Proof. It is similar to the proof of Theorem 2.4.

Example 12. Let $X_1 = \{1, a, b\}$ and $X_2 = \{1, c, d\}$ be two sets and $(X_1, \bullet_1, 1)$ and $(X_2, \bullet_2, 1)$ be two BL-BE-algebras as follows:

•1	1	a	b	\bullet_2	1	c	d
1	X_1	$\{a, b\}$	$\{b\}$	1	X_2	$\{c,d\}$	$\{d\}$
a	X_1	X_1	$\{a,b\}$	c	X_2	X_2	$ \{c, d$
b	X_1	X_1	X_1	d	X_2	X_2	X_2

It can be verified that $(X_1 \times X_2, \bullet, (1, 1))$ is a BL-BE-algebra by Theorem 4.1.

Theorem 4.4. Let $(X_1, \bullet_1, 1)$ and $(X_2, \bullet_2, 1)$ be BL-BE-algebras such that $X_1 \cap X_2 = \{1\}$ and $X = X_1 \cup X_2$. Then $(X, \bullet, 1)$ is a BL-BE-algebra, where the hyperoperation " \bullet " on H is defined as follows:

$$x \bullet y := \begin{cases} x \bullet_1 y & \text{if } x, y \in X_1, \\ x \bullet_2 y & \text{if } x, y \in X_2, \\ X & \text{otherwise,} \end{cases}$$

for all $x, y \in X$.

Proof. It is similar to the proof of Theorem 2.5.

We use the notation $X_1 \oplus X_2$ for the union of two BL-BE-algebras X_1 and X_2 .

Example 13. Consider two BL-BE-algebras $(X_1, \bullet_1, 1)$ and $(X_2, \bullet_2, 1)$ in Example 12. By Theorem 2.5, it can be verified that $(X, \bullet, 1)$ with the following table is a BL-BE-algebra.

•	1	a	b	c	d
1	X_1	$\{a, b\}$	$\{b\}$	$\{c,d\}$	$\{d\}$
a	X_1	X_1	$\{a,b\}$	X	X
b	X_1	X_1	X_1	X	X
c	X_2	X	X	X_2	$\{c,d\}$
d	X_2	X	X	X_2	X_2

230

Now, we give the concept of a principal beginning generated by an element, which lies in the subset in H:= X.

Suppose an HV-BE-algebra $(H, \bullet, 1)$ associated to the BE-algebra (H, *, 1) and a nonempty subset G of H. For an arbitrary element $g \in G$, we may write

$$(g]_{\leq_G} = \{x \in G \mid x \leq g\}$$

as well as

$$(g]_{\leq_H} = \{ x \in H \mid x \le g \}$$

Given this notation we may distinguish between $(G, \bullet_G, 1)$ based on the hyperoperation \bullet_G such that for an arbitrary pair of elements $a, b \in G$ we set

 $a \bullet_G b = (a * b]_{\leq_G} = \{x \in G \mid x \leq a * b\}$

and $(G, \bullet_H, 1)$, where $a \bullet_H b$ is defined by

$$a \bullet_H b = (a * b]_{\leq_H} = \{x \in H \mid x \le a * b\}$$

Obviously, properties of $(G, \bullet_G, 1)$ and $(G, \bullet_H, 1)$ will not be the same.

Theorem 4.5. Let $(H, \bullet, 1)$ be the associated HV-BE-algebra to the BE-algebra (H, *, 1) and (G, *, 1) its BE-subalgebra of H. Then

- (i) $x \in y \bullet_H G$, for all $x, y \in H$,
- (ii) $x \in y \bullet_G G$, for all $x, y \in G$.

Proof. (i) Let
$$x, y \in H$$
. Then $y \bullet_H G = \bigcup_{g \in G} y \bullet_H g = y \bullet_H 1 \cup \ldots = (y*1]_{\leq_H} \cup \ldots = (1]_{\leq_H} \cup \ldots = \{t \in H \mid t*1=1\} \cup \ldots = H \cup \ldots = H \text{ and so } x \in y \bullet_H G.$
(ii) Let $x, y \in G$. Then $y \bullet_G G = \bigcup_{g \in G} y \bullet_G g = y \bullet_G 1 \cup \ldots = G$ and so $y \in G$.

Remark 2. In general, in every BL-BE-algebra, Theorem 4.5 is valid. For see, in Example 13, $a \in c \bullet_X X$ in the union of two BL-BE-algebras X_1 and X_2 i.e., X.

Theorem 4.6. Let $(H, \bullet, 1)$ be the associated HV-BE-algebra of a BE-algebra (H, *, 1). If (G, *, 1) is a subalgebra of a BE-algebra (H, *, 1), then $(G, \bullet_G, 1)$ is an HV-BEalgebra.

Proof. Let $x \in G$. Since $x \bullet_G 1 = (x * 1]_{\leq G} = \{t \in G \mid t \leq 1\}$, then $1 \in x \bullet_G 1$ and so $x \leq 1$. we have $x \bullet_G x = (x * x]_{\leq G} = \{t \in G \mid t \leq 1\}$, then $1 \in x \bullet_G x$ and so $x \leq x$. Also, there exist $x * (y * z) \in x \bullet_G (y \bullet_G z), y * (x * z) \in y \bullet_G (x \bullet_G z)$ and $x * (y * z) = y * (x * z), \text{ then } x \bullet_G (y \bullet_G z) \cap y \bullet_G (x \bullet_G z) \neq \phi. \text{ Moreover, since}$ $1 \bullet_G x = (1 * x]_{\leq_G} = \{t \in G \mid t \leq x\}, \text{ then } x \in 1 \bullet_G x. \text{ Finally, let } 1 \leq x. \text{ Since}$ $1 \in 1 \bullet_G x = (1 * x]_{\leq_G} = \{t \in G \mid t \leq x\}, \text{ we have } 1 \leq x \text{ and so } 1 * x = 1. \text{ On the}$ other hand 1 * x = x. Therefore x = 1.

Remark 3. In Theorem 4.6, $(G, \bullet_H, 1)$ is not an HV-BE-algebra. Since G is not closed with respect to the hyperoperation \bullet_H .

Example 14. Let $H = \{1, a, b\}$ and define the operation "*" on H by the following table:

*	1	a	b
1	1	a	b
a	1	1	b
b	1	a	1

It can be easily verified that (H, *, 1) is a BE-algebra. Further define the hyperoperation in the usually "Begins lemma" way, i.e. for an arbitrary pair $x, y \in H$ define $x \bullet y = (x * y]_{\leq}$. Then $(H, \bullet, 1)$ is an HV-BE-algebra with the following table:

•	1	a	b
1	H	$\{a\}$	$\{b\}$
a	H	H	$\{b\}$
b	Η	$\{a\}$	Н

 $G = \{1, a\}$ is a BE-subalgebra of a BE-algebra (H, *, 1) and by Theorem 4.6, $(G, \bullet_G, 1)$ is an HV-BE-algebra. But, $(G, \bullet_H, 1)$ is not an HV-BE-algebra.

References

- S.S. Ahn, Y.H. Kim & J.M. Ko: Filters in commutative BE-algebras. Commun. Korean Math. Soc. 27 (2012), 233-242.
- R.A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar & R. Ameri: On pseudo BE-algebras. Discussi. Math. General Algebra Appl. 33 (2013), 95-108.
- 3. J. Chvalina: Functional graphs, quasi-ordered sets and commutative hypergroups. Masaryk University, Brno, 1995 (in Czech).
- P. Corsini & V. Leoreanu: Applications of hyperstructure theory. in: Adv. Math., vol. 5, Kluwer Academic Publishers, 2003.

- P. Corsini: Hyperstrutures associated with ordered sets. Bull. Greek Math. Soc. 48 (2003), 7-18.
- 6. P. Corsini: Prolegomena of hypergroup theory. Second Edition, Aviani Editor, 1993.
- B. Davvaz: A brief survey of the theory of HV-structures. Proc. 8th International Congress on Algebraic Hyperstructures and Applications, 1-9 Sep., 2002, Samothraki, Greece, Spanidis Press (2003), 39-70.
- B. Davvaz & V. Leoreanu: Hyperring theory and applications. International Academic Press, Palm Harbor, USA, 2007.
- 9. B. Davvaz: Partial abelian HV-monoids. Bull. Greek Math. Soc. 45 (2002), 53-62.
- M. Ghadiri & B. Davvaz: Direct system and direct limit of HV-modules. Iran. J. Sci. & Tech. Tran. A 28 (2004), 267-275.
- S.H. Ghazavi & S.M. Anvariyeh: EL-hyperstructures associated to n-ary relations. Soft Comput. 21 (2017), no. 19, 5841-5850.
- S.H. Ghazavi, S.M. Anvariyeh & S. Mirvakili: *EL*²-hyperstructures derived from (partially) quasi ordered hyperstructures. Iran. J. Math. Sci. Inform. **10** (2015), no. 2, 99-114.
- S.H. Ghazavi, S.M. Anvariyeh & S. Mirvakili: Ideals in EL-semihypergroups associated to ordered semigroups. J. Algebr. Syst. 3 (2015), no. 2, 109-125.
- D. Heidari & B. Davvaz: On ordered hyperstructures. U. P. B. Sci. Bull. Series A 73 (2011), no. 2, 85-96.
- S. Hoskova: Binary hyperstructure determined by relational and transformation systems. Habilitation Thesis, Faculty of Science, University of Ostrava, 2008.
- S. Hoskova: Order Hypergroups-The unique square root condition for quasi-order hypergroups. Set-valued Math. Appl. 1 (2008), 1-7.
- K. Iseki & S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japonica 23 (1978), 1-26.
- Y.B. Jun, E.H. Roh & H.S. Kim: On BH-algebras. Sci. Math. Japonica Online 1 (1998), 347-354.
- Y.B. Jun, M.M. Zahedi, X.L. Lin & R.A. Borzooei: On hyper BCK-algebras. Ital. j. Pure Appl. Math. 8 (2000), 127-136.
- 20. H.S. Kim & Y.H. Kim: On BE-algebras. Sci. Math. Jpn. 66 (2007), 113-116.
- F. Marty: Sur une generalization de la notion de group. 8th congress Math. Scandinaves, Stockholm (1934), 45-49.
- 22. J. Neggers & H.S. Kim: On *d*-algebras. Math. Slovaca **49** (1999), 19-26.
- 23. M. Novak: *EL*-hyperstructures: an overview. Ratio Math. 23 (2012), 65-80.
- M. Novak: Important elements of EL-hyperstructures. in: APLIMAT:10th International Conference, STU in Bratislava, Bratislava (2011), 151-158.
- 25. M. Novak: On EL-semihypergroup. European J. Combin. 44 (2015), 274-286.

- M. Novak: Potential of the Ends lemma to create ring-like hyperstructures from quasiordered (semi)groups. South Bohemia Math. Lett. 17 (2009), no. 1, 39-50.
- M. Novak: The Notion of subhyperstructure of "Ends lemma"-based Hyperstructures. Aplimat-J. Appl. Math. 3 (2010), no. 2, 237-247.
- S. Omidi & B. Davvaz: On ordered Krasner hyperrings. Iran. J. Math. Sci. Inf. 12 (2017), no, 2, 35-49.
- A. Radfar, A. Rezaei & A. Borumand Saeid: Hyper BE-algebras. Novi Sad J. Math. 44 (2014), no. 2, 137-147.
- A. Rezaei & A. Borumand Saeid: Commutative ideals in BE-algebras. Kyungpook Math. J. 52 (2012), 483-494.
- A. Rezaei, A. Borumand Saeid & R.A. Borzooei: Relation between Hilbert algebras and BE-algebras. Appl. Math. 8 (2013), 573-584.
- I.G. Rosenberg: Hypergroups and join spaces determined by relations. Ital. J. Pure Appl. Math. 4 (1998), 93-101.
- 33. S. Spartalis: On HV-semigroups. Ital. J. Pure Appl. Math. 11 (2002), 165-174.
- S. Spartaiis: On reversible HV-groups. Algebraic Hyperstructures and Applications, Proc. Fifth Intefnat. Congress on AHA Iasi, Romania 1993. Hadronic Press, Inc. Palm Harbor (1994), 163-170.
- S. Spartalis: On the number of HV-rings with P-hyperoperations. Combinatorics (Acireale, 1992), Discrete Math. 155 (1996), 225-231.
- T. Vougiouklis: Generalization of *P*-hypergroups. Rend. Circ. Mat. Palermo 36(II) (1987), 114-121.
- T. Vougiouklis: HV-vector spaces. Proc. 5th International Congress on Algebraic Hyperstructures and Applications, Jasi, Romania, July 4-10, 1993, Hadronic Press, Inc. Palm Harbor (1994), 181-190.
- T. Vougiouklis: Hyperstructures and their Representations. Hadronic Press, Inc. Palm Harbor, 1994.
- T. Vougiouklis: The fundamental relation in hyperrings. The general hyperfield. Algebraic hyperstructures and applications (Xanthi, 1990), 203-211, World Sci. Publishing, Teaneck, NJ, 1991.

^aDEPARTMENT OF MATHEMATICS, YAZD UNIVERSITY, YAZD, IRAN Email address: razieh.naghibi@stu.yazd.ac.ir

^bDepartment of Mathematics, Yazd University, Yazd, Iran *Email address:* anvariyeh@yazd.ac.ir

^cDepartment of Mathematics, Payame Noor University, Tehran, Iran Email address: saeed_mirvakili@pnu.ac.ir