DOI QR코드

DOI QR Code

Ba3V4O13-BaV2O6계 초저온 동시소성 세라믹스의 마이크로파 유전 특성

Microwave Dielectric Properties of Ultra-Low Temperature Co-firable Ba3V4O13-BaV2O6 Ceramics

  • 윤상옥 (강릉원주대학교 세라믹신소재학과) ;
  • 홍서영 (강릉원주대학교 대학원 재료공학과) ;
  • 조형환 (강릉원주대학교 대학원 재료공학과) ;
  • 김신 (강릉원주대학교 세라믹신소재학과)
  • Yoon, Sang-Ok (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Hong, Seoyoung (Department of Materials Engineering, Graduate School, Gangueung-Wonju National University) ;
  • Cho, Hyung-Hwan (Department of Materials Engineering, Graduate School, Gangueung-Wonju National University) ;
  • Kim, Shin (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
  • 투고 : 2021.06.16
  • 심사 : 2021.06.25
  • 발행 : 2021.09.01

초록

Phase evolution, sintering behavior, microstructure, and microwave dielectric properties of (1-x) mol Ba3V4O13 - (x) mol BaV2O6 system were investigated. The sintered specimens of all compositions consisted of Ba3V4O13 and BaV2O6, and no secondary phase was observed. As x increased, the linear shrinkage decreased to the composition of x=0.5, and then increased again, implying that Ba3V4O13 and BaV2O6 phases interfered mutually with each other during sintering. All compositions showed a dense microstructure with a large grain growth. Cracks were observed in some compositions because of the relatively high sintering temperature of 620~640℃. As x increased, the dielectric constant increased, while the quality factor was maintained from about 50,000 GHz to about 70,000 GHz up to the composition of x=0.9, and then decreased to 20,987~27,180 GHz at the composition of x=1.0. As x increased, the temperature coefficient of the resonance frequency showed a (+) value from a (-) value. The dielectric constant, the quality factor, and the temperature coefficient of resonant frequency of x=0.7 composition sintered at 640℃ for 4 hours were 10.61, 71,126 GHz, and -4.9 ppm/℃, respectively. This composition showed a good chemical compatibility with Al powder, indicating that the Ba3V4O13-BaV2O6 ceramics are a candidate material for ULTCC (Ultra-Low Temperature Co-fired Ceramics) applications.

키워드

참고문헌

  1. M. T. Sebastian and H. Jantunen, Microwave Materials and Applications (Wiley, UK, 2017), pp. 355-425. [DOI: https://doi.org/10.1002/9781119208549.ch8]
  2. W. Wersing, Curr. Opin. Solid State Mater. Sci., 1, 715 (1996). [DOI: https://doi.org/10.1016/S1359-0286(96)80056-8]
  3. H. Ohsato, J. Ceram Soc. Jpn., 113, 703 (2005). [DOI: https://doi.org/10.2109/jcersj.113.703]
  4. H. Yu, J. Liu, W. Zhang, and S. Zhang, J. Mater. Sci.: Mater. Electron., 26, 9414 (2015). [DOI: https://doi.org/10.1007/s10854-015-3282-y]
  5. M. T. Sebastian, H. Wang, and H. Jantunen, Curr. Opin. Solid State Mater. Sci., 20, 151 (2016). [DOI: https://doi.org/10.1016/j.cossms.2016.02.004]
  6. J. Varhese, T. Siponkoski, M. Sobocinski, T. Vahera, and H. Jantunen, Appl. Mater. Interfaces, 10, 11048 (2018). [DOI: https://doi.org/10.1021/acsami.8b00978]
  7. M. Valant and D. Suvorov, J. Am. Ceram. Soc., 84, 2900 (2001). [DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01112.x]
  8. Phase Diagrams for Ceramist, Fig. 93-018 (The American Ceramic Society, 1969).
  9. Y. Deng, P. Yao, and B. Li, Mater. Lett., 285, 129125 (2021). [DOI: https://doi.org/10.1016/j.matlet.2020.129125]
  10. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, J. Am. Ceram. Soc., 92, 3092 (2009). [DOI: https://doi.org/10.1111/j.1551-2916.2009.03324.x]
  11. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, J. Am. Ceram. Soc., 93, 934 (2010). [DOI: https://doi.org/10.1111/j.1551-2916.2009.03504.x]
  12. S. E. Kalathil, U. A. Neelakantan, and R. Ratheesh, J. Am. Ceram. Soc., 97, 1530 (2014). [DOI: https://doi.org/10.1111/jace.12802]
  13. U. A. Neelakantan, S. E. Kalathil, and R. Ratheesh, Eur. J. Inorg. Chem., 2015, 305 (2015). [DOI: https://doi.org/10.1002/ejic.201402844]
  14. ICDD (International Centre for Diffraction Data) #36-1466.
  15. ICDD (International Centre for Diffraction Data) #49-0525.
  16. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, USA, 1976), p. 913.
  17. V. L. Gurevich and A. K. Tagantsev, Adv. Phys., 40, 719 (1991). [DOI: https://doi.org/10.1080/00018739100101552]
  18. N. M. Alford and S. J. Penn, J. Appl. Phys., 80, 5895 (1996). [DOI: https://doi.org/10.1063/1.363584]
  19. S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, J. Am. Ceram. Soc., 80, 1885 (1997). [DOI: https://doi.org/10.1111/j.1151-2916.1997.tb03066.x]
  20. I. M. Reaney and D. Iddles, J. Am. Ceram. Soc., 89, 2063 (2006). [DOI: https://doi.org/10.1111/j.1551-2916.2006.01025.x]