DOI QR코드

DOI QR Code

초교환 상호작용 제어를 통해 강유전 BiFeO3-BaTiO3 시스템에서 유도된 상온 강자성 거동

Room-Temperature Ferromagnetic Behavior in Ferroelectric BiFeO3-BaTiO3 System Through Engineered Superexchange Path

  • 고누리 (울산과학기술원 신소재공학과 및 JULIA 연구센터) ;
  • 조재현 (울산과학기술원 신소재공학과 및 JULIA 연구센터) ;
  • 장종문 (한국재료연구원 세라믹재료연구본부 기능세라믹연구실) ;
  • 조욱 (울산과학기술원 신소재공학과 및 JULIA 연구센터)
  • Ko, Nu-Ri (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Cho, Jae-Hyeon (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jang, Jongmoon (Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS)) ;
  • Jo, Wook (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2021.07.27
  • 심사 : 2021.08.08
  • 발행 : 2021.09.01

초록

Multiferroics exhibiting the coexistence and a possible coupling of ferromagnetic and ferroelectric order are attracting widespread interest in terms of academic interests and possible applications. However, room-temperature single-phase multiferroics with soft ferromagnetic and displacive ferroelectric properties are still rare owing to the contradiction in the origin of ferromagnetism and ferroelectricity. In this study, we demonstrated that sizable ferromagnetic properties are induced in the ferroelectric bismuth ferrite-barium titanate system simply by introducing Co ions into the A-site. It is noted that all modified compositions exhibit well-saturated magnetic hysteresis loops at room temperature. Especially, 70Bi0.95Co0.05FeO3-30Ba0.95Co0.05TiO3 manifests noticeable ferroelectric and ferromagnetic properties; the spontaneous polarization and the saturation magnetization are 42 µC/cm2 and 3.6 emu/g, respectively. We expect that our methodology will be widely used in the development of perovskite-structured multiferroic oxides.

키워드

과제정보

본 연구는 울산과학기술원 2021년 연구 기금(1.210035.01) 및 과학기술정보통신부가 지원하는 한국연구재단의 해외우수연구기관유치사업(2017K1A4A3015437)의 연구비 지원을 받아 수행되었습니다.

참고문헌

  1. M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, Nat. Rev. Mater., 1, 16046 (2016). [DOI: https://doi.org/10.1038/natrevmats.2016.46]
  2. N. A. Spaldin and R. Ramesh, Nat. Mater., 18, 203 (2019). [DOI: https://doi.org/10.1038/s41563-018-0275-2]
  3. J. H. Cho and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 149 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.3.149]
  4. H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, Actuators, 5, 9 (2016). [DOI: https://doi.org/10.3390/act5010009]
  5. J. F. Scott, Nat. Mater., 6, 256 (2007). [DOI: https://doi.org/10.1038/nmat1868]
  6. D. K. Pradhan, S. Kumari, and P. D. Rack, Nanomaterials, 10, 2072 (2020). [DOI: https://doi.org/10.3390/nano10102072]
  7. M. A. Jalaja and S. Dutta, Adv. Mater. Lett., 6, 568 (2015). [DOI: https://doi.org/10.5185/amlett.2015.5878]
  8. S. W. Cheong, D. Talbayev, V. Kiryukhin, and A. Saxena, npj Quantum Mater., 3, 19 (2018). [DOI: https://doi.org/10.1038/s41535-018-0092-5]
  9. Y. Tokura and S. Seki, Adv. Mater., 22, 1554 (2010). [DOI: https://doi.org/10.1002/adma.200901961]
  10. S. Dong, H. Xiang, and E. Dagotto, Natl. Sci. Rev., 6, 629 (2019). [DOI: https://doi.org/10.1093/nsr/nwz023]
  11. D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).
  12. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 299, 1719 (2003). [DOI: https://doi.org/10.1126/science.1080615]
  13. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature, 426, 55 (2003). [DOI: https://doi.org/10.1038/nature02018]
  14. J. F. Scott, NPG Asia Mater., 5, e72 (2013). [DOI: https://doi.org/10.1038/am.2013.58]
  15. I. Kim, Y. S. Oh, Y. Liu, S. H. Chun, J. S. Lee, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Appl. Phys. Lett., 94, 042505 (2009). [DOI: https://doi.org/10.1063/1.3076102]
  16. K. Zhai, Y. Wu, S. Shen, W. Tian, H. Cao, Y. Chai, B. C. Chakoumakos, D. Shang, L. Yan, F. Wang, and Y. Sun, Nat. Commun., 8, 519 (2017). [DOI: https://doi.org/10.1038/s41467-017-00637-x]
  17. J. H. Cho, S. Cho, J. H. Lee, H. Palneedi, J. H. Lee, H. P. Kim, N. J. Lee, S. Tigunta, S. Pojprapai, S. Kim, J. Ryu, Y. S. Oh, S. Hong, and W. Jo, J. Am. Ceram. Soc. (2021). [DOI: https://doi.org/10.1111/jace.18012]
  18. T. Kimura, Annu. Rev. Condens. Matter Phys., 3, 93 (2012). [DOI: https://doi.org/10.1146/annurev-conmatphys-020911-125101]
  19. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Nat. Mater., 7, 478 (2008). [DOI: https://doi.org/10.1038/nmat2184]
  20. S. R. Burns, O. Paull, J. Juraszek, V. Nagarajan, and D. Sando, Adv. Mater., 32, 2003711 (2020). [DOI: https://doi.org/10.1002/adma.202003711]
  21. J. Kanamori, J. Phys. Chem. Solids, 10, 87 (1959). [DOI: https://doi.org/10.1016/0022-3697(59)90061-7]
  22. K. Sanjoom and G. Rujijanagul, Ferroelectrics, 454, 51 (2013). [DOI: https://doi.org/10.1080/00150193.2013.842778]
  23. S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen, and N. B. Ming, Appl. Phys. Lett., 87, 262907 (2005). [DOI: https://doi.org/10.1063/1.2147719]
  24. J. W. Woo, S. B. Baek, T. K. Song, M. H. Lee, J. U. Rahman, W. J. Kim, Y. S. Sung, M. H. Kim, and S. Lee, J. Korean Ceram. Soc., 54, 323 (2017). [DOI: https://doi.org/10.4191/kcers.2017.54.4.04]
  25. A. H. Khan, S. Atiq, M. S. Anwar, S. Naseem, and S. K. Abbas, J. Mater. Sci.: Mater. Electron., 29, 11812 (2018). [DOI: https://doi.org/10.1007/s10854-018-9281-z]
  26. M. H. Lee, D. J. Kim, H. I. Choi, M. H. Kim, T. K. Song, W. J. Kim, and D. Do, ACS Appl. Electron. Mater., 1, 1772 (2019). [DOI: https://doi.org/10.1021/acsaelm.9b00315]
  27. J. Pal, S. Kumar, L. Singh, M. Singh, and A. Singh, J. Magn. Magn. Mater., 441, 339 (2017). [DOI: https://doi.org/10.1016/j.jmmm.2017.05.047]
  28. S. O. Leontsev and R. E. Eitel, J. Am. Ceram. Soc., 92, 2957 (2009). [DOI: https://doi.org/10.1111/j.1551-2916.2009.03313.x]
  29. R.A.M. Gotardo, L. F. Cotica, I. A. Santos, M. Olzon-Dyonisio, S. D. Souza, D. Garcia, J. A. Eiras, and A. A. Coelho, Appl. Phys. A, 111, 563 (2012). [DOI: https://doi.org/10.1007/s00339-012-7258-y]
  30. S. Unruan, M. Unruan, T. Monnor, S. Priya, and R. Yimnirun, J. Am. Ceram. Soc., 98, 3291 (2015). [DOI: https://doi.org/10.1111/jace.13789]
  31. W. Yi, Z. Lu, X. Liu, D. Huang, Z. Jia, Z. Chen, X. Wang, and H. Zhu, J. Mater. Sci.: Mater. Electron., 32, 7719 (2021). [DOI: https://doi.org/10.1007/s10854-021-05490-9]
  32. Y. Wei, X. Wang, J. Zhu, X. Wang, and J. Jia, J. Am. Ceram. Soc., 96, 3163 (2013). [DOI: https://doi.org/10.1111/jace.12475]
  33. J. Wu, Z. Fan, D. Xiao, J. Zhu, and J. Wang, Prog. Mater. Sci., 84, 335 (2016). [DOI: https://doi.org/10.1016/j.pmatsci.2016. 09.001]
  34. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, J. Electroceram., 29, 71 (2012). [DOI: https://doi.org/10.1007/s10832-012-9742-3]
  35. C. Li, T. Zheng, and J. Wu, Acta Mater., 206, 116601 (2021). [DOI: https://doi.org/10.1016/j.actamat.2020.116601]
  36. C. H. Hong, H. Guo, X. Tan, J. E. Daniels, and W. Jo, J. Materiomics, 5, 634 (2019). [DOI: https://doi.org/10.1016/j.jmat.2019.06.004]