DOI QR코드

DOI QR Code

Propranolol Inhibits the Proliferation of Human Glioblastoma Cell Lines through Notch1 and Hes1 Signaling System

  • Kim, Hyun Sik (Department of Neurosurgery, Hallym University Sacred Heart Hospital) ;
  • Park, Young Han (Department of Obstetrics and Gynecology, Hallym University Sacred Heart Hospital) ;
  • Lee, Heui Seung (Department of Neurosurgery, Hallym University Sacred Heart Hospital) ;
  • Kwon, Mi Jung (Department of Pathology, Hallym University Sacred Heart Hospital) ;
  • Song, Joon Ho (Department of Neurosurgery, Hallym University Sacred Heart Hospital) ;
  • Chang, In Bok (Department of Neurosurgery, Hallym University Sacred Heart Hospital)
  • Received : 2021.03.17
  • Accepted : 2021.06.14
  • Published : 2021.09.01

Abstract

Objective : The anti-tumor effect of the beta-adrenergic receptor antagonist propranolol in breast cancer is well known; however, its activity in glioblastoma is not well-evaluated. The Notch-Hes pathway is known to regulate cell differentiation, proliferation, and apoptosis. We investigated the effect of propranolol to human glioblastoma cell lines, and the role of Notch and Hes signaling in this process. Methods : We performed immunohistochemical staining on 31 surgically resected primary human glioblastoma tissues. We also used glioblastoma cell lines of U87-MG, LN229, and neuroblastoma cell line of SH-SY5Y in this study. The effect of propranolol and isoproterenol on cell proliferation was evaluated using the MTT assay (absorbance 570 nm). The impact of propranolol on gene expression (Notch and Hes) was evaluated using real-time polymerase chain reaction (RT-PCR, whereas protein levels of Notch1 and Hes1 were measured using Western blotting (WB), simultaneously. Small interfering RNA (siRNA) was used to suppress the Notch gene to investigate its role in the proliferation of glioblastoma. Results : Propranolol and isoproterenol caused a dose-dependent decrease in cell proliferation (MTT assay). RT-PCR showed an increase in Notch1 and Hes1 expression by propranolol, whereas WB demonstrated increase in Notch1 protein, but a decrease in Hes1 by propranolol. The proliferation of U87-MG and LN229 was not significantly suppressed after transfection with Notch siRNA. Conclusion : These results demonstrated that propranolol suppressed the proliferation of glioblastoma cell lines and neuroblastoma cell line, and Hes1 was more closely involved than Notch1 was in glioblastoma proliferation.

Keywords

References

  1. Algazi M, Plu-Bureau G, Flahault A, Dondon MG, Le MG : Could treatments with beta-blockers be associated with a reduction in cancer risk? Rev Epidemiol Sante Publique 52 : 53-65, 2004
  2. Anjum K, Shagufta BI, Abbas SQ, Patel S, Khan I, Shah SAA, et al. : Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: a review. Biomed Pharmacother 92 : 681-689, 2017 https://doi.org/10.1016/j.biopha.2017.05.125
  3. Artavanis-Tsakonas S, Rand MD, Lake RJ : Notch signaling: cell fate control and signal integration in development. Science 284 : 770-776, 1999 https://doi.org/10.1126/science.284.5415.770
  4. Aster JC, Pear WS : Notch signaling in leukemia. Curr Opin Hematol 8 : 237-244, 2001 https://doi.org/10.1097/00062752-200107000-00010
  5. Bazzoni R, Bentivegna A : Role of notch signaling pathway in glioblastoma pathogenesis. Cancers (Basel) 11 : 292, 2019 https://doi.org/10.3390/cancers11030292
  6. Bigas A, Martin DI, Milner LA : Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Mol Cell Biol 18 : 2324-2333, 1998 https://doi.org/10.1128/MCB.18.4.2324
  7. Bolos V, Grego-Bessa J, de la Pompa JL : Notch signaling in development and cancer. Endocr Rev 28 : 339-363, 2007 https://doi.org/10.1210/er.2006-0046
  8. Cheung HC, Corley LJ, Fuller GN, McCutcheon IE, Cote GJ : Polypyrimidine tract binding protein and Notch1 are independently re-expressed in glioma. Mod Pathol 19 : 1034-1041, 2006 https://doi.org/10.1038/modpathol.3800635
  9. Dell'albani P, Rodolico M, Pellitteri R, Tricarichi E, Torrisi SA, D'Antoni S, et al. : Differential patterns of NOTCH1-4 receptor expression are markers of glioma cell differentiation. Neuro Oncol 16 : 204-216, 2014 https://doi.org/10.1093/neuonc/not168
  10. Fassberg J, Stella VJ : A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J Pharm Sci 81 : 676-684, 1992 https://doi.org/10.1002/jps.2600810718
  11. Hai L, Zhang C, Li T, Zhou X, Liu B, Li S, et al. : Notch1 is a prognostic factor that is distinctly activated in the classical and proneural subtype of glioblastoma and that promotes glioma cell survival via the NF-κB(p65) pathway. Cell Death Dis 9 : 158, 2018 https://doi.org/10.1038/s41419-017-0119-z
  12. Harada K, Sato Y, Ikeda H, Hsu M, Igarashi S, Nakanuma Y : Notch1-Hes1 signalling axis in the tumourigenesis of biliary neuroendocrine tumours. J Clin Pathol 66 : 386-391, 2013 https://doi.org/10.1136/jclinpath-2012-201273
  13. He JJ, Zhang WH, Liu SL, Chen YF, Liao CX, Shen QQ, et al. : Activation of β-adrenergic receptor promotes cellular proliferation in human glioblastoma. Oncol Lett 14 : 3846-3852, 2017 https://doi.org/10.3892/ol.2017.6653
  14. Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JB, et al. : Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin Cancer Res 26 : 1803-1811, 2020 https://doi.org/10.1158/1078-0432.CCR-19-2641
  15. Jang MS, Zlobin A, Kast WM, Miele L : Notch signaling as a target in multimodality cancer therapy. Curr Opin Mol Ther 2 : 55-65, 2000
  16. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B : Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99 : 3398-3433, 2002 https://doi.org/10.1182/blood.V99.9.3398
  17. Kim YY, Park CK, Kim SK, Phi JH, Kim JH, Kim CY, et al. : CKD-602, a camptothecin derivative, inhibits proliferation and induces apoptosis in glioma cell lines. Oncol Rep 21 : 1419-1419, 2009
  18. Kopan R, Ilagan MX : The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137 : 216-233, 2009 https://doi.org/10.1016/j.cell.2009.03.045
  19. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, et al. : Long-term survival with glioblastoma multiforme. Brain 130(Pt 10) : 2596-2606, 2007 https://doi.org/10.1093/brain/awm204
  20. Kusaczuk M, Kretowski R, Bartoszewicz M, Cechowska-Pasko M : Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line. Tumour Biol 37 : 931-942, 2016 https://doi.org/10.1007/s13277-015-3781-8
  21. Leong KG, Karsan A : Recent insights into the role of Notch signaling in tumorigenesis. Blood 107 : 2223-2233, 2006 https://doi.org/10.1182/blood-2005-08-3329
  22. Li J, Cui Y, Gao G, Zhao Z, Zhang H, Wang X : Notch1 is an independent prognostic factor for patients with glioma. J Surg Oncol : 103, 813-817, 2011 https://doi.org/10.1002/jso.21851
  23. Lino MM, Merlo A, Boulay JL : Notch signaling in glioblastoma: a developmental drug target? BMC Med 8 : 72, 2010 https://doi.org/10.1186/1741-7015-8-72
  24. Liu Y, Su C, Shan Y, Yang S, Ma G : Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition nuclear factor-κB signaling. Am J Transl Res 8 : 2681-3692, 2016
  25. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Fuller C : World Health Organization classification of tumours of the central nervous system, fourth edition. J Neuropathol Exp Neurol 67 : 260, 2008 https://doi.org/10.1097/NEN.0b013e31816b937a
  26. Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A, et al. : International Society of Neuropathology--haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24 : 429-435, 2014 https://doi.org/10.1111/bpa.12171
  27. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. : The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131 : 803-820, 2016 https://doi.org/10.1007/s00401-016-1545-1
  28. Margareto J, Leis O, Larrarte E, Idoate MA, Carrasco A, Lafuente JV : Gene expression profiling of human gliomas reveals differences between GBM and LGA related to energy metabolism and notch signaling pathways. J Mol Neurosci 32 : 53-63, 2007 https://doi.org/10.1007/s12031-007-0008-5
  29. Miele L, Golde T, Osborne B : Notch signaling in cancer. Curr Mol Med 6 : 905-918, 2006 https://doi.org/10.2174/156652406779010830
  30. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, et al. : Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33 : 416-421, 2003 https://doi.org/10.1038/ng1099
  31. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS : CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2011-2015. Neuro Oncol 20(suppl_4) : iv1-iv86, 2018 https://doi.org/10.1093/neuonc/noy131
  32. Park JC, Chang IB, Ahn JH, Kim JH, Song JH, Moon SM, et al. : Nerve growth factor stimulates glioblastoma proliferation through Notch1 receptor signaling. J Korean Neurosurg Soc 61 : 441-449, 2018 https://doi.org/10.3340/jkns.2017.0219
  33. Park YH, Kim SJ, Jeong BH, Herzog TJ, Wright J, Kitajewski J, et al. : Follicular stimulating hormone enhances Notch 1 expression in SK-OV-3 ovarian cancer cells. J Gynecol Oncol 21 : 119-124, 2010 https://doi.org/10.3802/jgo.2010.21.2.119
  34. Pasquier E, Ciccolini J, Carre M, Giacometti S, Fanciullino R, Pouchy C, et al. : Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2 : 797-809, 2011 https://doi.org/10.18632/oncotarget.343
  35. Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, et al. : β-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer 108 : 2485-2494, 2013 https://doi.org/10.1038/bjc.2013.205
  36. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. : Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9 : 157-173, 2006 https://doi.org/10.1016/j.ccr.2006.02.019
  37. Powe DG, Voss MJ, Zanker KS, Habashy HO, Green AR, Ellis IO, et al. : Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1 : 628-638, 2010 https://doi.org/10.18632/oncotarget.197
  38. Rundle-Thiele D, Head R, Cosgrove L, Martin JH : Repurposing some older drugs that cross the blood-brain barrier and have potential anticancer activity to provide new treatment options for glioblastoma. Br J Clin Pharmacol 81 : 199-209, 2016 https://doi.org/10.1111/bcp.12785
  39. Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB, et al. : Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61 : 3200-3205, 2001
  40. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. : Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352 : 987-996, 2005 https://doi.org/10.1056/NEJMoa043330
  41. Xu P, Yu S, Jiang R, Kang C, Wang G, Jiang H, et al. : Differential expression of Notch family members in astrocytomas and medulloblastomas. Pathol Oncol Res 15 : 703-710, 2009 https://doi.org/10.1007/s12253-009-9173-x
  42. Zhang D, Ma Q, Shen S, Hu H : Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist's anticancer effect in pancreatic cancer cell. Pancreas 38 : 94-100, 2009 https://doi.org/10.1097/MPA.0b013e318184f50c
  43. Zhang H, Wei T, Johnson A, Sun R, Richter G, Strub GM : NOTCH pathway activation in infantile hemangiomas. J Vasc Surg Venous Lymphat Disord 9 : 489-496, 2021 https://doi.org/10.1016/j.jvsv.2020.07.010