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1. Introduction

Human action recognition is used in various 

real-world applications, such as human robot 

interaction and video surveillance[1,2]. 

Especially, skeleton-based action recognition 

has attracted extensive attention since it can 

extract the robust features regardless of 

background interference, scale changes, or 

illumination conditions compared with RGB 

and video data [3, 4, 5, 6, 7, 8].

Conventional methods for skeleton-based 

action recognition considered each human 

joint as independent element, and designed 

handcrafted features to represent skeleton. 

Following the development of deep learning, 

researchers construct the skeleton data as a 

sequence of coordinate vectors or a fixed 2D 

grid that is fed into recurrent neural network 

(RNN)[10, 11, 12, 13] or convolution neural 

network (CNN) [14, 15, 16, 17, 18]. However, 

these approaches cannot represent 

corresponded joint dependencies on 

spatiotemporal dimension.

Yan et al. [3] first apply graph convolutional 

networks(GCNs), constructing a spatiotemporal 

graph that considers 3D coordinate body 

keypoints as nodes and their natural 

connectivities as edges. Their spatiotemporal 

graph convolutional network (ST-GCN) 

achieves better performance compared with 

previous methods. With various models based 

on ST-GCN [7, 19, 6, 4, 5], recent methods 

have achieved high performance by designing 

multi-scale structures or introducing various 
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modules to enhance network ability. However, 

most of them have heavy computational cost 

because they construct large graphs or build 

multiple network. To solve this shortcoming, 

shift-GCN [8] proposes shift graph 

convolutional network using shift operation 

and pointwise convolution.

In this work, we propose a lightweight 

shuffle graph convolutional network (SGCN). 

Our network consists of spatial and temporal 

shuffle GCNs, which is inspired by shufflenet 

[20]. The proposed spatial shuffle GCN 

contains graph convolution using a single 

adjacency matrix and part shuffle (PS) module 

that can effectively capture local and global 

joint connectivities. The proposed temporal 

shuffle GCN achieves better performance with 

lower computational cost while maintaining the 

same receptive field size as standard 

convolution approaches. 

The main contributions are as follows: We 

propose a lightweight spatiotemporal GCN 

using pointwise group convolution and 

depthwise convolution. Our model has 

flexibility to reduce computational cost with 

the various number of groups.

The proposed PS module enhances feature 

representation using local and global joint 

connectivities and achieves better performance 

to predict action labels.

2. PROPOSED METHOD

2.1. Overview

The goal of the skeleton based action 

recognition is to predict the action label for 

given data. The data is a sequence of frames, 

where each frame contains joint coordinates. 

The spatiotemporal GCN extracts the features 

from input data. We adopt the same 

two-stream framework as [4], which fuses 

scores by training joint and bone data in the 

identical network. Bone data is represented by 

a vector pointing to the target joint from the 

source joint, and contains length and direction 

information. Softmax scores from two stream 

models are then summed to obtain final scores 

and predict the action label.

Skeleton data in this work is denoted as 

      where  is the joints as a set of 

nodes and  is the bones as a set of edges. The 

Fig. 1. Overall architecture of our shuffle graph convolutional network (SGCN). The spatial graph convolutional network 

contains graph convolution and part shuffle (PS) modules, and the temporal graph convolutional network has large 

receptive field to obtain temporal information with low computational cost.



316   한국정보전자통신기술학회논문지 제14권 제4호

data represents the skeleton sequence, so we 

denote input data as ∈  ×  × , where  , 

 , and   are the number of channels, frames, 

and joints, respectively.

We use a group convolution, which divides 

the channel axis from standard convolution to 

group-wise, and we represent the groups of 

spatial and temporal networks as variables  

and , respectively. 

2.2. Spatial Shuffle Graph Convolutional N

etwork

Fig. 1. shows the proposed shuffle graph 

convolutional network containing three 

branches on the spatial GCN. First branch is 

graph convolutional network represented as:


  ′           (1)

where  is the pointwise convolution 

weights.  is the features extracted from 

frame .

 ′     where  is a learnable adjacency 

matrix, and  is the identity matrix. The 

remaining branches are local and global PS 

modules that combine the joints into a 

semantic part to obtain local or global 

information. The outputs from each branch are 

integrated by the group convolution, where   

is the number of groups. We then shuffle the 

features on channel dimension to enhance 

representation capability. Our spatial shuffle 

GCN can take various semantic connectivities 

between joints with low computational cost.

2.3. Part Shuffle (PS) Module

In this work, a part means a set of joints that 

are divided based on semantic connectivities. 

The PS module contains local and global 

modules and extracts the features from each 

semantic part. For the local PS module, we 

define the semantic parts as 'left arm', 'right 

arm', 'left leg', 'right leg', and 'head'.

As shown in Fig. 2., each part has the 

features of   ×  × , where  is the number 

Fig. 2. Illustration of the part shuffle (PS) module. By implementing part shuffle operation locally and 

globally, the features of each joint have a large receptive field.
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of joints. Each joint of 
∈  ×  × ( = 1, 2,,

) is divided into channel groups by the group 

convolution.

For simplicity, the number of group is set to 

3. We propose a part shuffle(PS) operation to 

take a large receptive field by simultaneously 

shuffling features on the channel and joint 

dimensions. After PS operation, each joint 

takes the features of other joints that belong to 

the same part, to capture the local information 

on spatial dimension. For global PS module, we 

assume all the joints are the same part and 

shuffle features from all joints by PS operation.

2.4. Temporal Shuffle Graph Convolutional 

Network

Since action data is a sequence of frames, 

modeling temporal network is necessary to 

extract the temporal information. Many 

existing methods use the  ×  convolution to 

design temporal GCN, where  is the kernel 

size on temporal dimension. Our temporal 

shuffle GCN is composed of pointwise group 

convolution and depthwise convolution layers 

to reduce the computational cost. To enhance 

the feature representation, we apply 

channel-wise shuffle operation after the first 

pointwise group convolution.

For comparison of FLOPs, we denote the 

input features as ∈  × × , where   is the 

number of channels and ×  is the feature 

map size. When the kernel ∈
 × ×  ×  ′

 is 

used in standard convolution, its FLOPs is 

calculated as:

 ×  ×  ×  ′.
Whereas, the FLOPs of our temporal model 

is calculated as:

 ×    
′,

where  is the number of groups in the 

group convolution.

2.5. Implementation Details

Tested on a single Titan RTX GPU, our 

model achieves a classification accuracy of 

88.8% on the NTU-RGB+D. The overall 

framework of our SGCN includes 8 layer except 

for a fully-connected layer, where each layer 

contains spatial and temporal shuffle GCNs. We 

use cross-entropy (CE) loss function and SGD 

optimizer with momentum of 0.9. our models 

are trained for 120 epochs with the initial 

learning rate of 0.1. The learning rate is 

divided by 10 at epoch 60, 80, and 100. The 

batch size is 32 and the weight decay is set to 

0.0001.

For NTU RGB+D and 120 [10, 25], the 

maximum number of frames is 300 in each 

sample. For samples less than 300 frames, we 

repeat the sample until it reaches 300 frames. 

Each sample contains at most two people. If 

there are less than two people in the sample, 

we pad the body of the second person with 0. 

Before training, inputs are pre-processed with 

normalization and translation, similar to 

existing works [4].

3. EXPERIMENT

3.1 Datasets

NTU RGB+D [10] is the most commonly used 

dataset in action recognition, containing 

Methods xsub xview( FLOPs(

Table 1. Comparisons of the Top-1 accuracy (%) and 
FLOPs(G) with state-of-the-art methods on the 
NTU-RGB+D.
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56,880 video clips and 60 classes. Video clips 

have 25 joint data of the body obtained from a 

kinetic sensor. It provides information about a 

total of 40 people and data taken from three 

different camera views. The author 

recommends two benchmarks to evaluate 

recognition performance. 1) Cross-subject 

(xsub) is divided into 40,320 training sets and 

16,560 validation sets, consisting of different 

subjects. 2) Cross-view (xview) consists of 

37,920 training sets, including two camera 

views at different angles. The rest of clips are 

used as validation set.

NTU RGB+D 120 [25] is an extended version 

of NTU RGB+D. It provides an additional 

57,000 video clips and 60 added classes, 

consisting of 110,000 clips for a total of 120 

classes from 106 different people and 32 

different camera setup. Cross subject uses 

54,000 clips for 53 different subjects as 

training, while the remaining clips are used as 

validation sets. The author recommends to 

replace the cross-view of NTU RGB+D with 

cross-setup. Cross setup (xset) uses 54,000 clips 

containing half setup for training, while the 

rest of clips are used as validation sets.

3.2 Evaluation

To validate our proposed method, we 

compare our SGCN with state-of-the-art 

methods on NTU RGB+D and NTU RGB+D 120 

datasets. We include handcrafted feature-based 

methods, RNN-based methods, CNN-based 

methods, and GCN-based methods. We divide 

them into horizontal lines. Since many 

state-of-the-art GCN-based methods utilize 

multi-stream fusion, and we also adopt the 

same approach to ensure fair comparison.

On NTU RGB+D dataset, our model is 

evaluated on cross-subject(xsub) and 

cross-view(xview) benchmarks in Table 1. The 

GCN-based methods generally perform better 

than RNN and CNN based-methods. Our model 

exceeds higher accuracy than 2s-AGCN [4] with 

Spatial Temporal xsub(%)
FLOPs  

(G)

Table 3. Comparisons between standard GCNs and our 
spatiotemporal shuffle GCN on the NTU RGB+D.

(%) %) G)

Lie Group [9] 50.1 52.8 -

Deep LSTM [10] 60.7 67.3 -

ST-LSTM [11] 69.2 77.7 -

STA-LSTM [12] 73.4 81.2 -

Ind-RNN [13] 81.8 88.0 -

2s-3DCNN [14] 66.8 72.6 -

TCN [15] 74.3 83.1 -

3scale ResNet152 

[16]
85.0 92.3 -

HCN [17] 86.5 91.1 -

TS-SAN [18] 87.2 92.7 -

ST-GCN [3] 81.5 88.3 -

2s-ASGCN [7] 86.8 94.2 27.0

2s-AGCN [4] 88.5 95.1 35.8

2s-AGCLSTM [5] 89.2 95.0 54.4

2s-DGNN [6] 89.2 95.5 63.4

2s-ShiftGCN [8] 89.7 96.0 5.0

2s-SGCN (ours) 88.8 94.7 3.3

Methods
xsub 

(%)

xset 

(%)

FLOPs

(G)

ST-LSTM [11] 55.7 57.9 -

GCA-LSTM [21] 61.2 63.3 -

RotClips+CNN [22] 62.2 61.8 -

Body Pose 

Evolution Map [23]
66.9 64.6 -

Skelemotion [24] 67.7 66.9 -

2s-AGCN [4] 82.9 84.9 35.8

2s-ShiftGCN [8] 85.3 86.6 5.0

2s-SGCN (ours) 84.1 85.5 3.3

Table 2. Comparisons of the Top-1 accuracy (%) and 
FLOPs(G) with state-of-the-art methods on the 
NTU-RGB+D 120.
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10.8× less computational cost, and achieves 

comparable performance with lowest 

computational cost compared to other 

state-of-the-art methods.

Table 2 shows the performance of 

cross-subject(xsub) and cross-setup(xset) 

benchmarks for the various models on the NTU 

RGB+D 120 dataset, with similar comparable 

performance and efficiency of our model. 

Although there is some trade-off between 

accuracy and computational cost, our model is 

able to be less affected and get more flexibility 

to reduce computational cost by adjusting the 

number of  and .

3.3 Ablation Studies

We conduct ablation studies to demonstrate 

our work. In Table 3, we show the effectiveness 

and efficiency of our spatial and temporal 

networks by comparing them with baseline 

model (2s-AGCN [4]). We describe the 

proposed method as shuffle and baseline 

method as standard. When each spatial and 

temporal shuffle GCN is applied, we achieve 

better performance with much less 

computational cost than baseline. Our final 

model, including both spatial and temporal 

shuffle GCNs, exceeds the performance of 

baseline at 0.3% with lower computational cost. 

Unlike other models, it allows flexibly to 

reduce computational cost by using the shuffle 

method and mitigates trade-off of the 

performance through PS opeartion that gives 

correlation between shuffled features and the 

parts of skeleton.

Table 3 also shows that the part shuffle 

operation is beneficial for spatial shuffle GCN 

and deleting this operation will harm the 

performance.

In Table 4, we show our SGCN can flexibly 

reduce the computational cost with various 

number of groups. We evaluate by changing  

and  to 3 and 5 on the spatiotemporal shuffle 

GCN. It shows the best performance of 88.8% 

when both  and  are set to 3. When  and 

 are different, the features of spatial and 

temporal shuffle GCN have an unbalanced 

receptive field. Thus, this causes degradation of 

representation capability and lower 

performance than the same number of groups.

In Table 5, we show the effectiveness of PS 

module. The result shows that given each 

branch, both local and global PS modules are 

important, which also proves importance of 

connectivities between joints.

Standard Standard 88.5 35.8

Standard Shuffle 89.4 14.9

Shuffle Standard 88.8 24.2

Shuffle

(w/o PS)
Shuffle 88.5 3.3

Shuffle Shuffle 88.8 3.3
Methods   xsub(%) FLOPs(G)

SGCN

3 3 88.8 3.3

3 5 88.2 3.2

5 3 88.1 3.0

5 5 88.3 2.9

Table 4. Recognition accuracy and computational cost 
with various number of groups in the spatiotemporal 
shuffle graph convolutional network on the NTU 
RGB+D.

Methods
xsub(%)

GCN Local Global

ü 88.4

ü ü 88.5

ü ü 88.4

ü ü ü 88.8

Table 5. Comparisons of the accuracy obtained by the 
local and global PS module on the NTU RGB+D.
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4. CONCLUSION

In this work, we have proposed a shuffle 

graph convolutional network (SGCN) for 

skeleton-based action recognition which 

contains spatial and temporal shuffle GCN. Our 

SGCN has more flexibility to reduce 

computational cost which is composed of 

pointwise group convolution rather than 

pointwise convolution.

The spatial shuffle GCN can take the various 

joint connectivities by implementing PS 

module. The temporal shuffle GCN achieves 

better performance than standard convolution 

with much less computational cost and can 

take a large receptive field.

The final model achieves comparable 

performance to current state-of-the-art 

method with lowest computational cost on NTU 

RGB+D and NTU RGB+D 120 datasets.
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과 석사 졸업

• 1999년 조지아공과대학 전기 및 

컴퓨터 공학과 박사 

• 현재 : 연세대학교 전기전자공학 

교수 

<관심분야> 얼굴인식, 패턴인식, 비디오 코덱 등


