DOI QR코드

DOI QR Code

큰열매모자반(Sargassum macrocarpum) 추출물의 항산화 효과 및 세포 활성 효과

Antioxidant activity and cell bioactivity of Sargassum macrocarpum extract

  • 김숙희 (건국대학교 미래지식교육원 학점은행제 K뷰티산업융합학전공)
  • Kim, Sook-hee (K-Beauty industry fusion, Konkuk Continuing Education Center, Konkuk University)
  • 투고 : 2021.06.27
  • 심사 : 2021.08.20
  • 발행 : 2021.08.28

초록

본 연구에서는 큰열매모자반 추출물의 식품 및 화장품으로서 이용성을 평가하기 위해 항산화능 및 항염능, 항비만효과를 확인하였다. 항산화실험으로서 폴리페놀, 플라보노이드, DPPH, ABTS, NO, FRAP을 실시하였다. 폴리페놀의 경우 30.81±1.12 mg/g으로 나타났다. 플라보노이드의 경우 25.72±0.94 mg/g으로 나타났다. DPPH 실험에서는 6.746 mg ascorbic acid / g extract의 항산화능을 나타내었으며, ABTS 실험에서는 15.59 mg ascorbic acid / g extract의 항산화능을 나타내었으며, NO 실험에서는 6.781 mg ascorbic acid / g extract의 항산화능을 나타내었다. FRAP에서는 큰열매모자반 추출물의 1 mg이 ascorbic acid 4.573±0.097 ㎍의 환원력을 보였다. 한편 세포실험에서는 큰열매모자반 추출물이 세포독성이 없음을 보였으며, NO 생성 억제능의 경우 25.95±0.85%의 염증 억제능을 보였으며, 29.75±2.35%의 지질 축적 억제능을 보여 큰열매모자반 추출물이 항염능, 항비만능을 가진 이너뷰티 제품 원료로서 사용가능함을 보였다. 향후 연구에서는 큰열매모자반이 포함하는 단일 물질들이 항산화, 항염, 항비만에 어떠한 기전으로 영향을 미치는지 연구할 필요가 있다.

In this study, the antioxidant and anti-inflammatory, anti-obesity properties, of Sargassum macrocarpum extracts were identified to assess the availability of Sargassum macrocarpum extracts as cosmetics and foods. To measure antioxidant activity, we conducted TPC, TFC, DPPH, ABTS, NO, FRAP. For polyphenols, 30.81±1.12 mg/g was shown. Flavonoids showed 25.72±0.94 mg/g. The DPPH experiment showed an antioxidant function of 6.746 mg ascorbic acid/g extract, the ABTS experiment showed an antioxidant function of 15.59 mg ascorbic acid/g extract, and the NO experiment showed an antioxidant function of 6.781 mg ascorbic acid/g extract. In FRAP, 1 mg of the Sargassum macrocarpum extract showed a reduction of 4.573±0.097 ㎍ of ascorbic acid. In cytotoxicity experiments, Sargassum macrocarpum extracts showed a cell survival rate of more than 80% at all concentrations, and an inflammatory inhibition of 25.95±0.85%, and an lipid accumulation inhibition of 29.75±2.35%. These results indicate that Sargassum macrocarpum extract is available as an anti-inflammatory cosmetic and anti-obesity inner beauty material. In future studies, it is necessary to study how pure substances containing Sargassum macrocarpum extract affect antioxidants, anti-inflammatory and anti-obesity

키워드

참고문헌

  1. J. K. Salmon, C. A. Armstrong & J. C. Ansel. (1994). The skin as an immune organ. Western journal of medicine, 160(2), 146.
  2. J. D. Bos. (1997). The skin as an organ of immunity. Clinical and Experimental Immunology, 107, 3-5.
  3. P. Di Meglio, G. K. Perera & F. O. Nestle. (2011). The multitasking organ: recent insights into skin immune function. Immunity, 35(6), 857-869. DOI:10.1016/j.immuni.2011.12.003
  4. E. Cadenas & K. J. Davies. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free radical biology and medicine, 29(3-4), 222-230. DOI:10.1016/S0891-5849(00)00317-8
  5. G. Barja. (2014). The mitochondrial free radical theory of aging. Progress in molecular biology and translational science, 127, 1-27. DOI:10.1016/B978-0-12-394625-6.00001-5
  6. M. Schieber & N. S. Chandel. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462. DOI:10.1016/j.cub.2014.03.034
  7. A. Ratz-Lyko, J. Arct & K. Pytkowska. (2012). Methods for evaluation of cosmetic antioxidant capacity. Skin Research and Technology, 18(4), 421-430. DOI:10.1111/j.1600-0846.2011.00588.x
  8. H. Masaki. (2010). Role of antioxidants in the skin: anti-aging effects. Journal of dermatological science, 58(2), 85-90. DOI:10.1016/j.jdermsci.2010.03.003
  9. W. C. Lim. (2020). Study on the role of AMPK on the obesity by inflammation. Asian Journal of Physical Education of Sport Science(AJPESS), 8(3), 187-196. https://doi.org/10.24007/AJPESS.2020.8.3.016
  10. M. Wlodarczyk & G. Nowicka. (2019). Obesity, DNA damage, and development of obesity-related diseases. International journal of molecular sciences, 20(5), 1146. DOI:10.3390/ijms20051146
  11. K. Karimi, T. H. Lindgren, C. A. Koch & R. T. Brodell. (2016). Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Reviews in Endocrine and Metabolic Disorders, 17(3), 389-403. DOI:10.1007/s11154-016-9393-9
  12. E. M. Balboa, E. Conde, A. Moure, E. Falque & H. Dominguez. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food chemistry, 138(2-3), 1764-1785. DOI: 10.1016/j.foodchem.2012.11.026
  13. A. M. Gamal-Eldeen, E. F. Ahmed & M. A. Abo-Zeid. (2009). In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Food and Chemical Toxicology, 47(6), 1378-1384. DOI:10.1016/j.fct.2009.03.016
  14. S. Ananthi, H. R. B. Raghavendran, A. G. Sunil, V. Gayathri, G. Ramakrishnan & H. R. Vasanthi. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food and chemical toxicology, 48(1), 187-192. DOI:10.1016/j.fct.2009.09.036
  15. A. Pekal & K. Pyrzynska. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776-1782. DOI : 10.1007/s12161-014-9814-x
  16. M. S. Blois. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  17. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang & C. Rice-Evans. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. DOI : 10.1016/S0891-5849(98)00315-3
  18. G. C. Jagetia & M. S. Baliga. (2004). The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. Journal of Medicinal Food, 7(3), 343-348. DOI: 10.4014/kjmb.1409.09006
  19. C. S. Kwak, S. A. Kim & M. S. Lee. (2005). The Correlation of Antioxidative Effects of 5 Korean Common Edible Seaweeds and Total Polyphenol Content. Journal of the Korean Society of Food Science and Nutrition, 34(8), 1143-1150. DOI:10.3746/jkfn.2005.34.8.1143
  20. B. Alexander, D. J. Browse, S. J. Reading & I. S. Benjamin. (1999). A simple and accurate mathematical method for calculation of the EC50. Journal of pharmacological and toxicological methods, 41(2-3), 55-58. DOI:10.1016/S1056-8719(98)00038-0
  21. Z. Demirel, F. F. Yilmaz-Koz, U. N. Karabay-Yavasoglu, G. Ozdemir & A. Sukatar. (2009). Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society, 74(6), 619-628. DOI:10.2298/JSC0906619D
  22. H. A. Monsur. (2011). Anti-inflammatory compounds of macro algae origin: A review. Journal of Medicinal Plants Research, 5(33), 7146-7154. DOI:10.5897/JMPRX11.018
  23. M. N. A. Khan, J. Y. Cho, M. C. Lee, J. Y. Kang, N. G. Park, H. Fujii & Y. K. Hong, Y. K. (2007). Isolation of two anti-inflammatory and one pro-inflammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifida. Journal of Agricultural and Food Chemistry, 55(17), 6984-6988. DOI:10.1021/jf071791s
  24. L. Wang, H. W. Yang, G. Ahn, X. Fu, J. Xu, X. Gao & Y. J. Jeon. (2021). In Vitro and In Vivo Anti-Inflammatory Effects of Sulfated Polysaccharides Isolated from the Edible Brown Seaweed, Sargassum fulvellum. Marine Drugs, 19(5), 277. DOI: 10.3390/md19050277
  25. H. Maeda, M. Hosokawa, T. Sashima, N. Takahashi, T. Kawada & K. Miyashita. (2006). Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. International journal of molecular medicine, 18(1), 147-152. DOI:10.3892/ijmm.18.1.147
  26. J. H. Oh & Y. K. Lee. (2015). Effects of Water and Ethanol Extracts from Four Types of Domestic Seaweeds on Cell Differentiation in 3T3-L1 Cell Line. The East Asian Society of Dietary Life, 25(6), 990-998. DOI:10.17495/easdl.2015.12.25.6.990