DOI QR코드

DOI QR Code

Clinical and Epidemiological Characteristics of Common Human Coronaviruses in Children: A Single Center Study, 2015-2019

  • Choi, Youn Young (Department of Pediatrics, Seoul National University Children's Hospital) ;
  • Kim, Ye Kyung (Department of Pediatrics, Seoul National University Children's Hospital) ;
  • Choi, Eun Hwa (Department of Pediatrics, Seoul National University Children's Hospital)
  • 투고 : 2021.03.08
  • 심사 : 2021.08.12
  • 발행 : 2021.08.25

초록

목적: 사람 코로나바이러스(human coronavirus [HCoV]) 감염은 보통 경미한 임상 양상을 보이는 경우가 많으므로, HCoV에 대한 연구가 다른 호흡기 바이러스들에 비해 상대적으로 잘 이루어지지 않고 있다. 본 연구는 국내 소아청소년에서의 HCoV 역학 및 임상적 특성을 기술하고자 하였다. 방법: 2015년 1월부터 2019년 12월까지 서울대학교 어린이병원에서 수집한 호흡기 검체의 호흡기바이러스 검사 결과를 분석하였다. 다중 reverse transcription polymerase chain reaction을 이용하여 바이러스를 검출하여 역학을 조사하였고, 이전 건강했던 어린이에게서 HCoV가 검출된 경우에 한하여 임상 진단을 분석하였다. 결과: 총 9,589 개 검체 중 5,017개(52.3%)에서 1개 이상의 호흡기바이러스가 검출되었고 463개(4.8%)가 HCoV 양성이었다(OC43 2.8%, NL63 1.4%, 229E 0.7%). 3가지 유형 모두 겨울철(11월-2월)에 유행하였으며 유형별로 역학적 차이를 보였다. HCoV-OC43이 가장 흔하였으며 매년 겨울에 유행하였다. HCoV-NL63은 1월-3월과 11월-2월 사이에 유행하였다. 한편, HCoV-229E는 2015/2016 및 2017/2018 겨울에 격년으로 유행하였다. 연령군을 0-1세, 2-4세, 5-19세로 분류하였을 때, HCoV 감염의 빈도는 2-4세에서 가장 높았고, 5-19세에서 가장 낮았다. HCoV 양성 검체의 40.8%에서 다른 호흡기바이러스가 함께 검출되었다. 리노바이러스 및 호흡기세포융합바이러스의 동시검출률이 각각 13.2%, 13.0%로 높았고, 인플루엔자 바이러스는 4.3%로 낮았다. 이전에 건강했던 135 명의 어린이에게서 가장 흔한 임상 진단은 상기도감염(60.0%)이었고, 폐렴(14.8%), 크루프(8.1%), 세기관지염(6.7%) 순이었다. 크루프는 NL63 양성인 어린이의 임상 진단 중 17.0%를 차지했다. 결론: 본 연구는 소아청소년에서의 HCoV (OC43, NL63, 229E) 감염의 역학적, 임상적 특성을 기술하였다. 소아청소년에서의 HCoV 감염에 대한 지속적인 감시가 필요하며, 추가적으로 HCoV-HKU1을 진단 패널에 포함한다면 HCoV 감염의 임상역학적 특징을 파악하는 데 더 도움이 될 것이다.

Purpose: Common human coronaviruses (HCoVs) are relatively understudied due to the mild nature of HCoV infection. Given the lack of local epidemiology data on common HCoVs, we aimed to describe clinical and epidemiological characteristics of common HCoVs in children. Methods: Respiratory viral test results from 9,589 respiratory samples from Seoul National University Children's Hospital were analyzed from January 2015 to December 2019. Viral detection was done by the multiplex reverse transcription polymerase chain reaction. Demographics and clinical diagnosis were collected for previously healthy children tested positive for HCoVs. Results: Of the 9,589 samples tested, 1 or more respiratory viruses were detected from 5,017 (52.3%) samples and 463 (4.8%) samples were positive for HCoVs (OC43 2.8%, NL63 1.4%, 229E 0.7%). All 3 types co-circulated during winter months (November to February) with some variation by type. HCoV-OC43 was the most prevalent every winter season. HCoV-NL63 showed alternate peaks in late winter (January to March) and early winter (November to February). HCoV-229E had smaller peaks every other winter. Forty-one percent of HCoV-positive samples were co-detected with additional viruses; human rhinovirus 13.2%, respiratory syncytial virus 13.0%, influenza virus 4.3%. Common clinical diagnosis was upper respiratory tract infection (60.0%) followed by pneumonia (14.8%), croup (8.1%), and bronchiolitis (6.7%). Croup accounted for 17.0% of HCoV-NL63-positive children. Conclusions: This study described clinical and epidemiological characteristics of common HCoVs (OC43, NL63, 229E) in children. Continuing surveillance, perhaps by adding HKU1 in the diagnostic panel can further elucidate the spectrum of common HCoV infections in children.

키워드

참고문헌

  1. van der Hoek L. Human coronaviruses: what do they cause? Antivir Ther 2007;12:651-8. https://doi.org/10.1177/135965350701200S01.1
  2. Makela MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimaki M, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 1998;36:539-42. https://doi.org/10.1128/JCM.36.2.539-542.1998
  3. Killerby ME, Biggs HM, Haynes A, Dahl RM, Mustaquim D, Gerber SI, et al. Human coronavirus circulation in the United States 2014-2017. J Clin Virol 2018;101:52-6. https://doi.org/10.1016/j.jcv.2018.01.019
  4. Sung JY, Lee HJ, Eun BW, Kim SH, Lee SY, Lee JY, et al. Role of human coronavirus NL63 in hospitalized children with croup. Pediatr Infect Dis J 2010;29:822-6. https://doi.org/10.1097/INF.0b013e3181de9c2e
  5. Lee WJ, Chung YS, Yoon HS, Kang C, Kim K. Prevalence and molecular epidemiology of human coronavirus HKU1 in patients with acute respiratory illness. J Med Virol 2013;85:309-14. https://doi.org/10.1002/jmv.23465
  6. Kim KH, Lee JH, Sun DS, Kim YB, Choi YJ, Park JS, et al. Detection and clinical manifestations of twelve respiratory viruses in hospitalized children with acute lower respiratory tract infections: focus on human metapneumovirus, human rhinovirus and human coronavirus. Korean J Pediatr 2008;51:834-41. https://doi.org/10.3345/kjp.2008.51.8.834
  7. Dare RK, Fry AM, Chittaganpitch M, Sawanpanyalert P, Olsen SJ, Erdman DD. Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J Infect Dis 2007;196:1321-8. https://doi.org/10.1086/521308
  8. Korea Centers for Disease Control and Prevention (KCDC). Public Health Weekly Report 2015-2019 [Internet]. Cheongju: KCDC; 2015-2019 [cited 2021 Apr 30]. Available from: https://www.kdca.go.kr/board/board.es?mid=a30501000000&bid=0031&cg_code=C04.
  9. U.S. Centers for Disease Control and Prevention (CDC). The National Respiratory and Enteric Virus Surveillance System (NREVSS) 2019-2020 [Internet]. Atlanta: CDC; 2019-2020 [cited 2021 Apr 30]. Available from: https://www.cdc.gov/surveillance/nrevss/coronavirus/natl-trends.html.
  10. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020;368:860-8. https://doi.org/10.1126/science.abb5793
  11. Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat Rev Immunol 2020;20:457-8. https://doi.org/10.1038/s41577-020-0389-z
  12. Ma Z, Li P, Ji Y, Ikram A, Pan Q. Cross-reactivity towards SARS-CoV-2: the potential role of low-pathogenic human coronaviruses. Lancet Microbe 2020;1:e151. https://doi.org/10.1016/S2666-5247(20)30098-7
  13. Hicks J, Klumpp-Thomas C, Kalish H, Shunmugavel A, Mehalko J, Denson JP, et al. Serologic crossreactivity of SARS-CoV-2 with endemic and seasonal Betacoronaviruses. J Clin Immunol 2021;41:906-13. https://doi.org/10.1007/s10875-021-00997-6
  14. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181:1489-501. https://doi.org/10.1016/j.cell.2020.05.015
  15. Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science 2020;369:846-9. https://doi.org/10.1126/science.abc6810
  16. Randolph HE, Barreiro LB. Herd immunity: understanding COVID-19. Immunity 2020;52:737-41. https://doi.org/10.1016/j.immuni.2020.04.012
  17. Seo YB, Song JY, Choi MJ, Kim IS, Yang TU, Hong KW, et al. Etiology and clinical outcomes of acute respiratory virus infection in hospitalized adults. Infect Chemother 2014;46:67-76. https://doi.org/10.3947/ic.2014.46.2.67