A report on 38 unrecorded bacterial species in Korea in the class Gammaproteobacteria

Veeraya Weerawongwiwat¹, Myung Kyum Kim², Kiseong Joh³, Seung-Bum Kim⁴, Chi-Nam Seong⁵, Hana Yi⁶, Jung-Hoon Yoon⁷ and Wonyong Kim¹,*

¹Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
²Division of Chemistry and Bio-Environmental Sciences, Seoul Women’s University College of Natural Sciences, Seoul 01797, Republic of Korea
³Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
⁴Department of Microbiology, Chungnam National University, Daejeon 34134, Republic of Korea
⁵Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea
⁶School of Biosystem and Biomedical Science, Department of Public Health Science, Korea University, Seoul 02841, Republic of Korea
⁷Department of Food Science and Biotechnology, Sungkyunkwan University, Seoul 03063, Republic of Korea

*Correspondent: kimwy@cau.ac.kr

During an investigation of indigenous prokaryotic species in the Republic of Korea, a total of 38 bacterial strains belonging to the class Gammaproteobacteria were isolated from diverse environments. Samples were collected from soil, seawater, sand, sedimentary soil, rabbit feces, rat intestines, marine wetland, and tidal flats. The strains were identified to the species level using the high 16S rRNA gene sequences and showed high similarity (>98.7%) with the closest bacterial species and formed a robust clade in the neighbor-joining phylogenetic tree; it was determined that each strain belonged to independent, predefined bacteria species within the class Gammaproteobacteria. The 38 strains of Gammaproteobacteria analyzed in this study have not been reported in the Republic of Korea. Therefore, this study describes 20 genera of 13 families in 8 orders: Aeromonadales, Alteromonadales, Cellvibrionales, Enterobacterales, Lysobacterales, Oceanospirillales, Pseudomonadales, and Vibrionales. For each species, we describe Gram reaction, strain ID, isolation source, colony and cell morphology, cultural, physiological, and basic biochemical characteristics.

Keywords: 16S rRNA, Gammaproteobacteria, unrecorded species

© 2021 National Institute of Biological Resources
DOI:10.12651/JSR.2021.10.3.201

INTRODUCTION

The understanding of bacterial phylogeny has rapidly transformed over the past few decades. The introduction of small subunit ribosomal RNA genes (Woese and Fox, 1977), followed by the development of next-generation sequencing techniques and bioinformatics have expanded to large-scale, cost-effective multiplex analyses, producing new data to study the taxonomic and functional diversity of the microbial community (Lauber et al., 2009; Whon et al., 2012; Pascault et al., 2014).

The phylum Proteobacteria constitutes the largest phylogenetic lineage (Kersters et al., 2006); it contains many pathogenic bacteria. Gammaproteobacteria is a class within the phylum Proteobacteria; it was first proposed by Garrity et al. (2005a) and amended by Williams and Kelly (2013). Gammaproteobacteria contains a large and diverse group of bacteria that exhibit wide variation in terms of phenotype, morphology, metabolic capability, and tropism (phototrophs and chemolithotrophs). Members of the class Gammaproteobacteria are gram-negative bacteria, including rods, cocci, spirilla, and filaments, with different morphological characteristics; they are isolated from a wide range of environments. At the time of writing this article, the class has been divided into 20 orders: Acidithiobacillales (Kojima et al., 2015), Aeromonadales (Martin-Carnahan and Joseph, 2005), Alteromonadales (Bowman and McMeekin, 2005), Arenicellales (Teramoto, 2015), Cardiobacterales (Garrity et al., 2005b), Cellvibrionales (Spring et al., 2015), Chromatiales (Imhoff, 2005), Enterobacterales (Adeolu et al., 2016), Immunisolobacterales (Corteselli et al., 2017), Legionellales (Garrity et al., 2005d), Methyl-
ococcales (Bowman, 2005), Nevskiales (Naushad et al., 2015), Oceanospirillales (Garrity et al., 2005e), Orbales (Kwong and Moran, 2013), Pasteurellales (Garrity et al., 2005f), Pseudomonadales, Salinisphaerales (Skerman et al., 1980), Thiotrichales (Garrity et al., 2005c), Vibrio- nales (Skerman et al., 1980), and Xanthomonadales (Sad- dler and Bradbury, 2005).

In 2019, diverse environmental samples were collected from habitats in Korea, and novel and unrecorded bacterial species were isolated. The isolated bacterial species belong to the following taxa: Actinobacteria, Alphaproteobacteria, Bacteroidetes, Betaproteobacteria, Firmicutes, and Gam- maproteobacteria. This study focused on the description of 38 unreported strains belonging to 13 families within 8 orders in the class Gammaproteobacteria.

Materials and Methods

The strains were isolated from samples collected from soil, seawater, sand, sedimentary soil, rabbit feces, rat intestines, marine wetlands, and tidal flats. Each sample was separately homogenized and suspended in appropriate solutions based on its source. The suspensions were serially diluted and aliquots (100 μL) of each sample were plated on various culture media, including ISP7, marine agar 2216 (MA), trypticase soy agar (TSA), nutrient agar (NA), Anaerobe basal medium, 1/10 LB, and R2A. The plates were incubated at 25–37°C for 2–4 days (Table 1). All the strains were purified by subculturing a single colony on fresh media, and pure cultures were stored in optimal media supplemented with 25% glycerol (v/v) at −80°C as lyo- philized ampules.

Genomic DNA was extracted from each strain using a genomic DNA extraction kit (Intron). The 16S rRNA gene was amplified using PCR as described previously with two universal primers, 8F (5′-AGAGTTTGATCCTTG-GCTCAG-3′) and 1525R (5′-AAGGAGGTGWTCCA-RCC-3′) (Lane, 1991). The BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) and a 3730 automatic DNA sequencer (Applied Biosystems) were used to sequence the 16S rRNA gene amplicons. Multiple sequence alignments were constructed using CLUSTAL X (Thompson et al., 1997), and calculation of gene sequence similarity between each strain and the most closely related strains were performed using EzTaxon-e - EzBiocloud.net (http://www.ezbiocloud.net/eztaxon) (Kim et al., 2012). A phylogenetic tree was constructed using the neighbor-joining (Saitou and Nei, 1987), maximum-likelihood (Felsenstein, 1981), and maximum-parsimony (Fitch and Margoliash, 1967) algorithms in the MEGA7 program (Kumar et al., 2016). Evolutionary distance matrices were generated using the neighbor-joining method, as described by Jukes and Cantor (1969). Branch support in the neighbor-joining
<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Genus</th>
<th>Strain ID</th>
<th>NIBR ID</th>
<th>Most closely related species</th>
<th>Similarity (%)</th>
<th>Isolation source</th>
<th>Medium</th>
<th>Incubation condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysobacterales</td>
<td>Lysobacteraceae</td>
<td>Pseudomonas</td>
<td>BSSL-CR1</td>
<td>NIBRBC000503331</td>
<td>P. genticulata ATCC 19374T</td>
<td>99.78</td>
<td>Tidal flat</td>
<td>R2A</td>
<td>25°C, 2d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luteimonas</td>
<td>HMF9088</td>
<td>NIBRBC000503010</td>
<td>L. terrae THG-MD21T</td>
<td>99.38</td>
<td>Seawater</td>
<td>R2A</td>
<td>30°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudoxanthomonas</td>
<td>HMF6713</td>
<td>NIBRBC000503113</td>
<td>P. composit GSS51T</td>
<td>99.73</td>
<td>Sedimentary soil</td>
<td>MA</td>
<td>30°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudoxanthomonas</td>
<td>HMF9812</td>
<td>NIBRBC000503120</td>
<td>P. spadix DSM 18855T</td>
<td>98.98</td>
<td>Marine wetland</td>
<td>MA</td>
<td>30°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stenotrophomonas</td>
<td>j18</td>
<td>NIBRBC000503383</td>
<td>S. lactisub M15T</td>
<td>99.93</td>
<td>Soil</td>
<td>R2A</td>
<td>30°C, 3d</td>
</tr>
<tr>
<td>Oceanospirillales</td>
<td>Halomonadaceae</td>
<td>Halomonas</td>
<td>KYW1820</td>
<td>NIBRBC000503288</td>
<td>H. shengliensis SL014B-85T</td>
<td>99.86</td>
<td>Seawater</td>
<td>MA</td>
<td>25°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halomonas</td>
<td>KYW1809</td>
<td>NIBRBC000503291</td>
<td>H. titanicae BH1T</td>
<td>99.31</td>
<td>Seawater</td>
<td>MA</td>
<td>25°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halomonas</td>
<td>KYW1985</td>
<td>NIBRBC000503308</td>
<td>H. xianhensis A-1T</td>
<td>99.73</td>
<td>Seawater</td>
<td>MA</td>
<td>25°C, 2d</td>
</tr>
<tr>
<td></td>
<td>Moraxellaceae</td>
<td>Acinetobacter</td>
<td>LPB0278</td>
<td>NIBRBC000503343</td>
<td>A. dispersus ANC-4105T</td>
<td>99.79</td>
<td>Soil</td>
<td>MA</td>
<td>25°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychrobacter</td>
<td>LPB0279</td>
<td>NIBRBC000503342</td>
<td>P. pacificensis IFO 16270T</td>
<td>99.30</td>
<td>Soil</td>
<td>R2A</td>
<td>25°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pseudomonadales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pseudomonas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCBP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503281</td>
<td>P. lactola NBRC 103146T</td>
<td>99.86</td>
<td>Soil</td>
<td>MA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KYW1748</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503302</td>
<td>P. thiodurigenes NEAU-STS-21T</td>
<td>99.86</td>
<td>Seawater</td>
<td>MA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAU 1519</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503226</td>
<td>P. benzoferox DSM 18628T</td>
<td>99.04</td>
<td>Sand</td>
<td>R2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAU 1560</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503232</td>
<td>P. sol F-279,208T</td>
<td>99.93</td>
<td>Sand</td>
<td>MA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BT58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000502990</td>
<td>P. castellii FB102T</td>
<td>99.38</td>
<td>Soil</td>
<td>R2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BT76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000502994</td>
<td>P. silesiensis A3T</td>
<td>99.52</td>
<td>Soil</td>
<td>R2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BT345</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503000</td>
<td>P. paraffluvi NBRC 16636T</td>
<td>98.70</td>
<td>Soil</td>
<td>R2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LPB0305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503345</td>
<td>P. oleovorans subsp. oleovorans DSM 1045T</td>
<td>98.71</td>
<td>Soil</td>
<td>R2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MMS19-T15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503370</td>
<td>P. cremonis IAM 1541T</td>
<td>99.25</td>
<td>Soil</td>
<td>R2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503379</td>
<td>P. citreorose DSM 103043T</td>
<td>99.72</td>
<td>Soil</td>
<td>R2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BG108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503381</td>
<td>P. kurodae DSM AP3_22T</td>
<td>99.79</td>
<td>Soil</td>
<td>TSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BG24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000503375</td>
<td>P. flavescens LMG 1838T</td>
<td>98.69</td>
<td>Soil</td>
<td>TSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BT59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIBRBC000502991</td>
<td>P. chlororaphis DSM 19603T</td>
<td>99.86</td>
<td>Soil</td>
<td>1/10 LB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vibrionales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grimontia</td>
<td>LPB0317</td>
<td>NIBRBC000503352</td>
<td>G. indica AK 16T</td>
<td>98.92</td>
<td>Seawater</td>
<td>MA</td>
<td>25°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibrio</td>
<td>LPB0315</td>
<td>NIBRBC000503351</td>
<td>V. hungshenseis CN85T</td>
<td>99.50</td>
<td>Seawater</td>
<td>MA</td>
<td>25°C, 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibrio</td>
<td>LPB0326</td>
<td>NIBRBC000503356</td>
<td>V. hyugaensis 090810aT</td>
<td>98.78</td>
<td>Sand</td>
<td>MA</td>
<td>25°C, 3d</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

On the basis of the 16S rRNA sequence comparison and phylogenetic analysis, a total of 38 strains were assigned to the class Gammaproteobacteria and were classified into 13 families of 8 orders: one species in the genus Aeromonas of the family Aeromonadaceae within the order Aeromonadales, five species in five genera of three families within the order Alteromonadales, one species in the genus Microbulbifer of the family Microbulbiferaceae within the order Cellvibrionales, five species in five genera of three families within the order Enterobacteriales, five species in four genera of the family Lysobacteraceae within the order Lysobacterales, three species in the genus Halomonas of the family Halomonadaceae within the order Oceanospirillales, 15 species in three genera of two families within the order Pseudomonadales, and three species in two genera of the family Vibrionaceae within the order Vibrionales. All the strains were gram-negative and chemoheterotrophic, with rod-shaped cells, except for three strains, the cells of which were coccoid-shaped (Fig. 1 and Fig. 2). Details of the colony morphology and phylogeny of the strains are reported in the species description section.

Comparison of 16S rRNA gene sequences showed high similarities (>98.6%) with the closest related strains. One strain of the order Aeromonadales (F-7), five strains of the order Alteromonadales (HM6821, CAU1518, HM6852, HM6915, and HMF9426), one strain of the order Cellvibrionales (LPB0320), five strains of the order Enterobacteriales (LPB0291, LPB0301, R-6, BT361, and LPB0234), and five strains of the order Alteromonadales (HM6821, CAU1518, HM6852, HM6915 and HMF9426) had the highest similarities to Halomonas shenguensis SL014B-85T (EF121853; 99.86%), Halomonas titanicae BH1T (AOP001000038; 99.31%), Halomonas xianhensis A-1T (EF421176; 99.73%), Acinetobacter dispersus ANC 4105T (KB850049; 99.79%), Psychrobacter pacificensis IFO 16279T (AB016057; 99.30%), Pseudomonas luteola NBRC 103146T (BDAE01000066; 99.86%), Pseudomonas zhaodongensis NEAU-STS-21T (RFFM01000015; 99.86%), Pseudomonas benzenivorans DSM 8628T (FNCT01000040; 99.04%), Pseudomonas soli F-279.208T (HF930598; 99.93%), Pseudomonas caspiana FBFI02T (LOHF01000033; 99.38%), Pseudomonas silesiensis A3T (KX276592; 99.52%), Pseudomonas parafulva NBRC 16636T (BBIU01000051; 98.70%), Pseudomonas oleovorans subsp. oleovorans DSM 1045T (NIUB01000072; 98.71%), Pseudomonas larvylsulfativorans AP3_22T (MF554631; 99.79%), Pseudomonas flavescens LMG 18387T (FDNG01000047; 98.69%), Pseudomonas chlororaphis subsp. aurantiaca DSM 19603T (CP027746; 99.86%), Grimontia indica AK16T (ANFM02000053; 98.99%), Vibrio hzonghounensis CN83T (EU082035; 99.50%), and Vibrio hyugaensis 090810aT (LC004912; 99.78%).

Phylogenetic analyses showed that the isolated strains formed a robust clade with the most closely related species in the orders Aeromonadales, Alteromonadales, Cellvibrionales, Enterobacteriales, and Lysobacteriales (Fig. 3), and Oceanospirillales, Pseudomonadales, and Vibrionales (Fig. 4). There are no official reports of these 38 strains;
in Korea. Therefore, these 38 strains in the class Gammaproteobacteria are newly reported strains in Korea: one species in the order Aeromonadales, five species in the order Alteromonadales, one species in the order Cellvibrionales, five species in the order Enterobacterales, five species in the order Lysobacterales, three species in the order Oceanospirillales, 15 species in the order Pseudomonadales, and three species in the order Vibrionales.

Description of Aeromonas sanarellii F-7

The cells are gram-negative, non-flagellated, and cocci shaped. The colonies are light yellow in color, circular,
Fig. 2. Transmission electron micrographs of cells of the species in the orders Oceanospirillales, Pseudomonadales, and Vibrionales belonging to the class Gammaproteobacteria in this study. Strain: 1, KYW1820; 2, KYW1809; 3, KYW1985; 4, LPB0278; 5, LPB0279; 6, SCBP1; 7, KYW1748; 8, CAU 1519; 9, CAU 1560; 10, BT58; 11, BT76; 12, BT345; 13, LPB0305; 14, MMS19-T15; 15, F-130; 16, BG108; 17, BG24; 18, BT59; 19, LPB0317; 20, LPB0315; 21, LPB0326.
convex, and undulate after incubation on ISP7 at 30℃ for 3 days under aerobic conditions. The strains are positive for nitrate reduction, arginine dihydrolase, urease, esculin hydrolysis, gelatinase, β-galactosidase, and utilization of glucose, mannose, mannitol, N-acetyl-glucosamine, maltose, capric acid, malic acid, and phenylacetic acid; but negative for indole production, glucose fermentation, and utilization of arabinose, potassium gluconate, adipic acid, trisodium citrate, and cytochrome oxidase, per the analysis using the API 20NE kit. Strain F-7 (= NIBRBAC 000503374) was isolated from soil in Gung-dong, Yuseong-gu, Daejeon, Republic of Korea.

Description of *Marinobacter adhaerens* HMF6821

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are light yellow in color, circular, convex, and smooth after incubation on MA at 30℃ for 3 days under aerobic conditions. The strains are positive

![Fig. 3. Neighbor-joining (NJ) phylogenetic tree constructed based on nearly complete 16S rRNA gene sequences showing the relationships between 17 isolated strains and their most closely related species from the orders Aeromonadales, Alteromonadales, Cellvibrionales, Enterobacterales, and Lysobacterales of the class Gammaproteobacteria. The dots indicate that the corresponding nodes were also recovered in the trees created using the maximum-likelihood (ML) and maximum-parsimony (MP) algorithms. Bootstrap values are indicated as percentages of 1,000 resampled datasets, when greater than 70% (NJ/ML/MP). Bar, 0.01 substitutions per nucleotide position. *Bacillus subtilis* IAM 12118T (NR_112116.2) is used as an outgroup organism.](image-url)
for nitrate reduction, utilization of malic acid, and cytochrome oxidase; but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain HMF6821 (= NIBR BAC000503114) was isolated from sedimentary soil in Wando-gun, Jeollanam-do, Republic of Korea.

Description of Alteromonas gracilis CAU 1518

The cells are gram-negative, non-flagellated, and short rod-shaped. The colonies are cream-colored, circular, convex, mucoid, and smooth after incubation on MA at...
30°C for 2 days under aerobic conditions. It is positive for esculin hydrolysis, gelatinase, and β-galactosidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. However, the result for the presence of cytochrome oxidase is not available. Strain CAU 1518 (= NIBRBAC000503225) was isolated from sand in Jung-dong, Haeundae-gu, Busan, Republic of Korea.

Description of Pseudoalteromonas fenneropenaei HMF6852

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are white-colored, circular, convex, and smooth after incubation on MA at 30°C for 3 days under aerobic conditions. It is positive for esculin hydrolysis, gelatinase, and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain HMF 6852 (= NIBRBAC000503115) was isolated from sedimentary soil in Wando-gun, Jeollanam-do, Republic of Korea.

Description of Shewanella inventionis HMF6915

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are pale pink in color, circular, convex, and smooth after incubation on MA at 30°C for 3 days under aerobic conditions. It is positive for nitrate reduction, esculin hydrolysis, gelatinase, and cytochrome oxidase; but negative for indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain HMF 6915 (= NIBRBAC000503116) was isolated from seawater in Gangneung-si, Gangwon-do, Republic of Korea.

Description of Enterobacter hormaechei subsp. xiangfangensis LPB0291

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, circular, entire, and convex after incubation on Anaerobe basal medium at 30°C for 3 days under anaerobic conditions. It is positive for urease (weak) and acidification of glucose, mannitol, saccharose, maltose, xylose, arabinose, cellobiose, mannose, raffinose, sorbitol, rhamnose, and trehalose; but negative for indole formation, acidification of lactose, salicin, glycerol, and melezitose, gelatinase, esculin hydrolysis, and cytochrome oxidase, per the analysis using the API 20A kit. Strain LPB0291 (= NIBRBAC000503337) was isolated from rabbit feces in Hasidong-ri, Gangdong-myeon, Gangneung-si, Gangwon-do, Republic of Korea.

Description of Rosenbergiella epipactidis LPB0301

The cells are gram-negative, non-flagellated, and coccoidal. The colonies are yellow in color, circular, convex, and entire after incubation on R2A plates at 25°C for 3 days under aerobic conditions. It is positive for glucose fermentation, arginine dihydrolase, esculin hydrolysis, β-galactosidase, and utilization of glucose, arabinose, mannitol, N-acetyl-glucosamine (weak), potassium gluconate, trisodium citrate (weak), and phenylacetic acid; but negative for nitrate reduction, indole production, urease, gelatinase, utilization of mannose, maltose, capric acid, adipic acid, malic acid, and cytochrome oxidase, per the anal-
ysis using the API 20NE kit. Strain LPB0301 (= NIBR BAC000503362) was isolated from sand in Hasidong-ri, Gangdong-myeon, Gangneung-si, Gangwon-do, Republic of Korea.

Description of Lelliottia amnigena R-6

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, opaque, raised, and punctiform after incubation on R2A plates at 37°C for 3 days under aerobic conditions. It is positive for nitrate reduction, indole production (weak), glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, β-galactosidase, and utilization of glucose, arabinose, mannose, N-acetyl-glucosamine, maltose, malic acid, and trisodium citrate; but negative for gelatinase and utilization of capric acid, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. However, the result for the presence of cytochrome oxidase is not available. Strain R-6 (= NIBR BAC000503386) was isolated from soil in Yangcheon-ri, Ganjeon-myeon, Gurye-gun, Jeollanam-do, Republic of Korea.

Description of Pantoea brenneri BT361

The cells are gram-negative, flagellated, and rod-shaped. The colonies are yellow in color, circular, and smooth after incubation on R2A plates at 25°C for 3 days under aerobic conditions. It is positive for esculin hydrolysis, gelatinase, utilization of malic acid, and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine (weak), maltose, potassium gluconate, and malic acid; but negative for nitrate reduction, indole production, arginine dihydrolase, urease, gelatinase, utilization of capric acid, adipic acid, trisodium citrate, and phenylacetic acid, and cytochrome oxidase in API 20NE. Strain BT361 (= NIBR BAC000503001) was isolated from soil in Jeju-do, Republic of Korea.

Description of Morganella morganii subsp. morgani LPB0234

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, circular, convex, and entire after incubation on Anaerobe basal medium at 30°C for 3 days under anaerobic conditions. It is positive for acidification of glucose, mannitol, lactose, saccharose (weak), maltose (weak), salicin, xylose (weak), glycerol (weak), cellobiose, mannose, melezitose, raffinose (weak), sorbitol, rhamnose, and trehalose; but negative for indole formation, urease, acidification of arabinose, gelatinase, esculin hydrolysis, and cytochrome oxidase, per the analysis using the API 20A kit. Strain LPB0234 (= NIBR BAC000503357) was isolated from rat intestines in Jeonmindoong, Yuseong-gu, Daejeon, Republic of Korea.

Description of Pseudomonas geniculata BSSL-CR1

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are yellowish-white in color, circular, slightly convex, and glistening after incubation on R2A plates at 25°C for 2 days under aerobic conditions. It is positive for nitrate reduction, arginine dihydrolase, urease, esculin hydrolysis, gelatinase, β-galactosidase, and utilization of glucose, arabinose, mannose, N-acetyl-glucosamine, maltose, malic acid, and trisodium citrate; but negative for indole production, glucose fermentation, utilization of mannitol, potassium gluconate, capric acid, adipic acid, and phenylacetic acid, and cytochrome oxidase, per the analysis using the API 20NE kit. Strain BSSL-CR1 (= NIBR BAC000503331) was isolated from a tidal flat in Sohwang-ri, Ungcheon-eup, Boryeong-si, Chungcheongnam-do, Republic of Korea.

Description of Luteimonas terrae HMF6088

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are yellow in color, circular, convex, and smooth after incubation on R2A plates at 30°C for 3 days under aerobic conditions. It is positive for esculin hydrolysis, gelatinase, utilization of malic acid, and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain HMF6088 (= NIBR BAC000503108) was isolated from seawater in Jeju-si, Jeju-do, Republic of Korea.

Description of Pseudoxanthomonas composti HMF6713

The cells are gram-negative, flagellated, and rod-shaped. The colonies are yellow in color, circular, convex, and entire after incubation on MA at 30°C for 3 days under aerobic conditions. It is positive for urease, esculin hydrolysis, gelatinase, β-galactosidase, utilization of glucose, mannose, mannitol, N-acetyl-glucosamine, malic acid, and trisodium citrate, and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, trisodium citrate, and phenylacetic acid, in API 20NE. Strain HMF6713 (= NIBR BAC000503113) was isolated from sedimentary soil in Wando-gun, Jeollanam-do, Republic of Korea.

Description of Pseudoxanthomonas spadix HMF9812

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are yellow in color, circular, convex,
and smooth after incubation on MA plates at 30°C for 3 days under facultative anaerobic conditions. It is positive for arginine dihydrolase, urease, esculin hydrolysis, gelatinase, β-galactosidase, utilization of glucose, mannose, mannitol, N-acetyl-glucosamine, maltose, malic acid, and trisodium citrate, and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, and utilization of arabinose, potassium glutonate, capric acid, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. Strain HMF9812 (= NIBRBAC000503120) was isolated from a marine water in Gangneung-si, Gangwon-do, Republic of Korea.

Description of *Stenotrophomonas lactitubi* jr18

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are light green in color, circular, convex, and entire after incubation on R2A plates at 30°C for 3 days under aerobic conditions. It is positive for nitrate reduction, arginine dihydrolase, urease, esculin hydrolysis, gelatinase, β-galactosidase, and utilization of glucose, mannose, N-acetyl-glucosamine, maltose, malic acid, and trisodium citrate; but negative for indole production, glucose fermentation, and utilization of arabinose, mannitol, potassium glutonate, capric acid, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. However, the result for the presence of cytochrome oxidase is not available. Strain jr18 (= NIBRBAC000503383) was isolated from soil in Yangcheon-ri, Ganjeon-myeon, Gurye-gun, Jeollanam-do, Republic of Korea.

Description of *Halomonas shengliensis* KYW1820

The cells are gram-negative, non-flagellated, and short rod-shaped. The colonies are cream-colored, circular, smooth, opaque, and convex after incubation on MA plates at 25°C for 3 days under aerobic conditions. It is positive for cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase, β-galactosidase, and utilization of glucose, arginine, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium glutonate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain KYW1820 (= NIBRBAC000503298) was isolated from seawater in Gwangyang-si, Jeollanam-do, Republic of Korea.

Description of *Halomonas xianhensis* KYW1985

The cells are gram-negative, non-flagellated, and short rod-shaped. The colonies are pale yellow in color, circular, smooth, translucent, and convex after incubation on MA plates at 25°C for 2 days under aerobic conditions. It is positive for glucose fermentation and esculin hydrolysis; but negative for nitrate reduction, indole production, arginine dihydrolase, urease, gelatinase, β-galactosidase, utilization of glucose, arginine, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium glutonate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, and cytochrome oxidase, per the analysis using the API 20NE kit. Strain KYW1985 (= NIBRBAC0005030308) was isolated from seawater in Gwangyang-si, Jeollanam-do, Republic of Korea.

Description of *Acinetobacter dispersus* LPB0278

The cells are gram-positive, non-flagellated, and rod-shaped. The colonies are cream-colored, circular, smooth, and convex after incubation on MA plates at 25°C for 3 days under aerobic conditions. It is positive for esculin hydrolysis (weak), gelatinase (weak), and utilization of capric acid, malic acid, trisodium citrate, and phenylacetic acid; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, potassium glutonate, and adipic acid, and cytochrome oxidase, per the analysis using the API 20NE kit. Strain LPB0278 (= NIBRBAC000503343) was isolated from soil in Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea.

Description of *Psychrobacter pacificensis* LPB0279

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, circular, smooth, and entire after incubation on R2A plates at 25°C for 3 days under aerobic conditions. It is positive for esculin hydrolysis (weak), utilization of malic acid, and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, gelatinase, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine,
maltose, potassium gluconate, capric acid, adipic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain LPB0279 (= NIBRBAC 000503342) was isolated from soil in Anam-dong 5-ga, Seongbuk-gu, Seoul, Republic of Korea.

Description of Pseudomonas luteola SCBP1

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are pale yellow in color, wrinkled, erose, drop-like, and opaque after incubation on MA plates at 25°C for 3 days under aerobic conditions. It is positive for nitrate reduction, urease, esculin hydrolysis, gelatinase, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, maltose, potassium gluconate, capric acid, malic acid, and trisodium citrate; but negative for indole production, glucose fermentation, arginine dihydrolase, utilization of N-acetyl-glucosamine, adipic acid, and phenylacetic acid, and cytochrome oxidase, per the analysis using the API 20NE kit. Strain SCBP1 (= NIBRBAC 000503281) was isolated from soil in Suncheon-si, Jeollanam-do, Republic of Korea.

Description of Pseudomonas zhaodongensis KYW1748

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are beige in color, circular, raised, smooth, and translucent after incubation on MA plates 25°C for 4 days under aerobic conditions. It is positive for nitrate reduction, esculin hydrolysis, utilization of glucose, arabinose, mannitol, maltose, potassium gluconate, malic acid, and trisodium citrate, and cytochrome oxidase; but negative for indole production, glucose fermentation, arginine dihydrolase, urease, gelatinase, β-galactosidase, and utilization of mannose, N-acetyl-glucosamine, capric acid, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. Strain KYW1748 (= NIBRBAC 000503302) was isolated from seawater in Gwangyang-si, Jeollanam-do, Republic of Korea.

Description of Pseudomonas benzenivorans CAU 1519

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, convex, smooth, and irregular after incubation on R2A plates at 30°C for 2 days under aerobic conditions. It is positive for esculin hydrolysis (weak), gelatinase, and utilization of glucose, mannitol, maltose, potassium gluconate, malic acid, and trisodium citrate (weak); but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of arabinose, mannose, N-acetyl-glucosamine, capric acid, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. However, the result for the presence of cytochrome oxidase is not available. Strain CAU 1519 (= NIBRBAC 000503226) was isolated from sand in Hupyeon-dong, Chuncheon-si, Gangwon-do, Republic of Korea.

Description of Pseudomonas soli CAU 1560

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, circular, convex, and shiny after incubation on NA plates at 37°C for 2 days under anaerobic conditions. It is positive for glucose fermentation, gelatinase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, and potassium gluconate; but negative for nitrate reduction, indole production, arginine dihydrolase, urease, esculin hydrolysis, β-galactosidase, and utilization of capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. However, the result for the presence of cytochrome oxidase is not available. Strain CAU 1560 (= NIBRBAC000503232) was isolated from sand in Hupyeon-dong, Chuncheon-si, Gangwon-do, Republic of Korea.

Description of Pseudomonas caspiana BT58

The cells are gram-negative, flagellated, and rod-shaped. The colonies are white in color, circular, convex, and smooth after incubation on R2A plates at 25°C for 3 days under aerobic conditions. It is positive for arginine dihydrolase, esculin hydrolysis (weak), gelatinase (weak), utilization of glucose, arabinose, mannose, mannitol (weak), N-acetyl-glucosamine, potassium gluconate (weak), capric acid (weak), malic acid (weak), and trisodium citrate (weak), and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, urease, β-galactosidase, and utilization of maltose, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. Strain BT58 (= NIBRBAC000502990) was isolated from soil in Hoenggye-ri, Daegwallyeong-myeon, Pyeongchang-gun, Gangwon-do, Republic of Korea.

Description of Pseudomonas silesiensis BT76

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are white in color, circular, convex, and smooth after incubation on R2A plates at 25°C for 3 days under aerobic conditions. It is positive for nitrate reduction, arginine dihydrolase (weak), urease, gelatinase, utilization of potassium gluconate and capric acid, and cytochrome oxidase; but negative for indole production, glucose fermentation, esculin hydrolysis, β-galactosidase, and utilization of glucose, arabinose, mannose, mannitol, N-acetyl-glucosamine, maltose, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain BT76 (= NIBRBAC000502994) was isolated from soil in Hoenggye-ri, Daegwal-
Description of *Pseudomonas parafulva* BT345

The cells are gram-positive, non-flagellated, and rod-shaped. The colonies are white in color, circular, convex, and smooth after incubation on R2A plates at 25°C for 3 days under aerobic conditions. It is positive for nitrate reduction, esculin hydrolysis, gelatinase (weak), utilization of glucose, arabinose, mannose, mannitol, potassium gluconate, capric acid (weak), malic acid (weak), and trisodium citrate (weak), and cytochrome oxidase; but negative for indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of N-acetyl-glucosamine, maltose, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. Strain BT345 (= NIBRBC000503000) was isolated from soil in Jeju-do, Republic of Korea.

Description of *Pseudomonas oleovorans* subsp. *oleovorans* LPB0305

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are yellow in color, circular, convex, and entire after incubation on R2A plates at 25°C for 3 days under aerobic conditions. It is positive for esculin hydrolysis (weak), utilization of glucose, mannose, mannitol, potassium gluconate, capric acid, malic acid, and trisodium citrate, and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of N-acetyl-glucosamine, maltose, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. Strain LPB0305 (= NIBRBC000503345) was isolated from sand in Hasidong-ri, Gangwon-do, Republic of Korea.

Description of *Pseudomonas cremoricolorata* MMS19-T15

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are yellow in color, circular, convex, and entire after incubation on R2A plates at 30°C for 3 days under aerobic conditions. It is positive for esculin hydrolysis (weak), utilization of glucose, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid, trisodium citrate, and phenylacetic acid, and cytochrome oxidase; but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, galatase, β-galactosidase, and utilization of arabinose, mannose, mannitol, maltose, and adipic acid, per the analysis using the API 20NE kit. Strain MMS19-T15 (= NIBR BAC000503370) was isolated from soil in Banggwang-ri, Gwangui-myeon, Gurye-gun, Jeollanam-do, Republic of Korea.

Description of *Pseudomonas citronellolis* F-130

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are color-colored, circular, convex, and entire after incubation on R2A plates at 30°C for 3 days under aerobic conditions. It is positive for nitrate reduction, esculin hydrolysis, gelatinase, utilization of glucose, arabinose, N-acetyl-glucosamine, maltose, potassium gluconate, malic acid, and trisodium citrate, and cytochrome oxidase; but negative for indole production, glucose fermentation, arginine dihydrolase, urease, β-galactosidase, and utilization of mannose, mannitol, capric acid, adipic acid, and phenylacetic acid, per the analysis using the API 20NE kit. Strain F-130 (= NIBRBC000503379) was isolated from soil in Gung-dong, Yuseong-gu, Daejon, Republic of Korea.

Description of *Pseudomonas laurylsulfativorans* BG108

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, circular, convex, and entire after incubation on TSA plates at 30°C for 3 days under aerobic conditions. It is positive for nitrate reduction, glucose fermentation, arginine dihydrolase, urease (weak), esculin hydrolysis (weak), utilization of glucose, arabinose (weak), mannose, mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid, trisodium citrate, and phenylacetic acid, and cytochrome oxidase; but negative for indole production, gelatinase, β-galactosidase, and utilization of maltose and adipic acid, per the analysis using the API 20NE kit. Strain BG108 (= NIBRBC000503381) was isolated from a forest in Banggwang-ri, Gwangui-myeon, Gurye-gun, Jeollanam-do, Republic of Korea.

Description of *Pseudomonas flavescens* BG24

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are yellow in color, circular, convex, and entire after incubation on TSA plates at 30°C for 3 days under aerobic conditions. It is positive for nitrate reduction, glucose fermentation, esculin hydrolysis, gelatinase, β-galactosidase, and utilization of glucose, N-acetyl-glucosamine, maltose, potassium gluconate, and malic acid; but negative for indole production, arginine dihydrolase, urease, utilization of arabinose, mannose, mannitol, capric acid, adipic acid, trisodium citrate, and phenylacetic acid, and cytochrome oxidase, per the analysis using the API 20NE kit. Strain BG24 (= NIBRBC000503375) was isolated from soil in Banggwang-ri, Gwangui-myeon, Gurye-gun, Jeollanam-do, Republic of Korea.
Description of *Pseudomonas chlororaphis* subsp. *aurantiaca* BT59

The cells are gram-negative, non-flagellated, and cocci-shaped. The colonies are yellow in color, circular, and smooth after incubation on 1/10 LB plates at 25°C for 3 days under aerobic conditions. It is positive for nitrate reduction, arginine dihydrolase, gelatinase, utilization of glucose, arabinose (weak), mannose (weak), mannitol, *N*-acetyl-glucosamine (weak), potassium gluconate, caprylic acid (weak), malic acid (weak), trisodium citrate (weak), and phenylacetic acid, and cytochrome oxidase; but negative for arginine dihydrolase, urease, and utilization of glucose, arabinose, mannose, man nitol, *N*-acetyl-glucosamine, maltose, potassium gluconate, caprylic acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain LPB0317 (=NIBRBAC000503352) was isolated from seawater in Anmyeon-eup, Taean-gun, Chungcheongnam-do, Republic of Korea.

Description of *Grimontia indica* LPB0317

The cells are gram-negative, single polar flagellated, and rod-shaped. The colonies are cream-colored, circular, entire, and convex after incubation on MA plates at 25°C for 3 days under aerobic conditions. It is positive for nitrate reduction, indole production, glucose fermentation, esculin hydrolysis, β-galactosidase, and utilization of maltose and adpic acid, per the analysis using the API 20NE kit. Strain BT59 (=NIBRBAC000502991) was isolated from soil in Hoenggye-ri, Daegwallyeong, Pyeongchang-gun, Gangwon-do, Republic of Korea.

Description of *Vibrio hangzhouensis* LPB0315

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, circular, entire, and convex after incubation on TSA plates at 25°C for 3 days under aerobic conditions. It is positive for nitrate reduction, indole production, glucose fermentation, esculin hydrolysis, gelatinase, β-galactosidase activity, and cytochrome oxidase; but negative for arginine dihydrolase, urease, and utilization of glucose, arabinose, mannose, mannitol, *N*-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacet ic acid, per the analysis using the API 20NE kit. Strain LPB0326 (=NIBRBAC000503356) was isolated from sand in Anmyeon-eup, Taean-gun, Chungcheongnam-do, Republic of Korea.

Description of *Vibrio hyugaensis* LPB0326

The cells are gram-negative, non-flagellated, and rod-shaped. The colonies are cream-colored, circular, entire, and convex after incubation on TSA plates at 25°C for 3 days under aerobic conditions. It is positive for nitrate reduction, indole production, glucose fermentation, esculin hydrolysis, gelatinase, β-galactosidase activity, and cytochrome oxidase; but negative for arginine dihydrolase, urease, and utilization of glucose, arabinose, mannose, mannitol, *N*-acetyl-glucosamine, maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate, and phenylacetic acid, per the analysis using the API 20NE kit. Strain LPB0326 (=NIBRBAC000503356) was isolated from sand in Anmyeon-eup, Taean-gun, Chungcheongnam-do, Republic of Korea.

Acknowledgements

This work was supported by the project on the survey of indigenous species of Korea of the National Institute of Biological Resources (NIBR) under the Ministry of Environment (MOE).

References

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal Molecular Evo-

Garrity, G.M., J.A. Bell and T. Lilburn. 2005l. Order XIV. Naushad, S., M. Adeolu, S. Wong, M. Sohail, H.E. Schellhorn and R. Gupta. 2015. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algisiphilaceae and Solimonadales to the order Neovibionales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 107(2):467-485.

Submitted: November 12, 2020
Revised: November 18, 2020
Accepted: November 18, 2020