DOI QR코드

DOI QR Code

Small UAV Failure Rate Analysis Based on Human Damage on the Ground Considering Flight Over Populated Area

도심 지역 비행을 위한 지상 인명 피해 기반 소형무인기 고장 빈도 분석

  • Received : 2021.06.09
  • Accepted : 2021.08.13
  • Published : 2021.09.01

Abstract

In this paper, we quantitatively analyzed the required UAV(Unmanned Aerial Vehicle) failure rate of small UAV (≤25kg) based on the harm to human caused by UAV crash to fly over the populated area. We compute the number of harm to human when UAV falls to the ground at certain descent point by using population density, car traffic, building to land ratio, number of floors of building data of urban area and UAV descent trajectory modeling. Based on this, the maximum allowable UAV failure rate is calculated to satisfy the Target Level of Safety(TLS) for each UAV descent point. Then we can generate the failure rate requirement in the form of map. Finally, we divide UAV failure rate into few categories and analyze the possible flight area for each failure rate categories. Considering the Youngwol area, it is analyzed that the UAV failure rate of at least 10-4 (failure/flight hour) is required to access the residential area.

본 연구에서는 소형무인기(≤25kg)가 도심 지역에서 비행하고자 할 때 요구되는 고장 빈도를 무인기 추락 시 발생할 수 있는 지상 인명 피해를 기반으로 정량적으로 분석하였다. 도심 지역의 인구 밀도, 차량 교통량, 건폐율, 건물 층수 데이터 및 무인기 추락 궤적 모델링을 이용하여 특정 위치에서 무인기 추락 시 인명 피해를 계산하였고 이를 바탕으로 각 무인기 추락 위치에서 안전성 목표값을 만족하기 위한 최대 허용 가능 무인기 고장 빈도를 계산하였다. 이를 통해 각 무인기 추락 위치별 고장 빈도 요구사항을 맵 형태로 도출할 수 있었다. 최종적으로 최대 허용 가능 무인기 고장 빈도를 몇 구간으로 구분하여 각 구간별 도심 지역 비행 가능 영역을 분석하였다. 영월 지역을 대상으로 했을 때 인구 주거 지역 접근을 위해서는 최소 10-4 (failure/flight hour) 이하의 무인기 고장 빈도가 요구됨을 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호: 21USTR-B127901-05)

References

  1. Concept of Operations for Drones - A Risk Based Approach to Regulation of Unmanned Aircraft, EASA, Cologne, 2015.
  2. Ryan, W., "Type and Airworthiness Certifications," FAA UAS Symposium, 2017.
  3. CORUS U-space Concept of Operations, 03.00.02 Ed., SESAR, Brussels, 2019.
  4. JARUS Guidelines on Specific Operations Risk Assessment (SORA), 2nd Ed., JARUS, 2019.
  5. Washington, A., Clothier, R. A. and Silva, J., "A review of unmanned aircraft system ground risk models," Progress in Aerospace Sciences, Vol. 1, No. 95, 2017, pp. 24~44. https://doi.org/10.1016/j.paerosci.2017.10.001
  6. Breunig, J., Forman, J., Sayed, S., Audenaerd, L., Branch, A. and Hadjimichael, M., Modeling Risk-Based Approach for Small Unmanned Aircraft Systems, MITRE Corporation, McLean, 2018.
  7. Kim, S. H., "Third-Party Risk Analysis of Small Unmanned Aircraft Systems Operations," Journal of Aerospace Information Systems, Vol. 17, No. 1, 2020, pp. 24~35. https://doi.org/10.2514/1.i010763
  8. la Cour-Harbo, A., "Ground impact probability distribution for small unmanned aircraft in ballistic descent," Proceeding of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 1442~1451.
  9. la Cour-Harbo, A., "Quantifying Risk of Ground Impact Fatalities for Small Unmanned Aircraft," Journal of Intelligent & Robotic Systems, Vol. 93, No. 1, 2019, pp. 367~384. https://doi.org/10.1007/s10846-018-0853-1
  10. Primatesta, S., Rizzo, A. and la Cour-Harbo, A., "Ground Risk Map for Unmanned Aircraft in Urban Environments," Journal of Intelligent & Robotic Systems, Vol. 97, No. 3, 2020, pp. 489~509. https://doi.org/10.1007/s10846-019-01015-z
  11. Kim, Y. S., Cho, A. and Bae, J. W., "Navigation Performance Derivation for Safe Separation of UAVs for Local-area UAS Traffic Management Based on Ground Risk Map," Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), 2020, pp. 236~261.
  12. Kim, Y. S., "Ground Risk Model Development for Low Altitude UAV Traffic Management," Journal of Advanced Navigation Technology, Vol. 24, No. 6, 2020, pp. 471~478. https://doi.org/10.12673/JANT.2020.24.6.471
  13. Levasseur, B., Bertrand, S., Raballand, N., Viguier, F. and Goussu, G., "Accurate ground impact footprints and probabilistic maps for risk analysis of UAV missions," 2019 IEEE Aerospace Conference, March 2019, pp. 1~10.
  14. Lin, C. E. and Shao, P. C., "Failure analysis for an unmanned aerial vehicle using safe path planning," Journal of Aerospace Information Systems, Vol. 17, No. 7, 2020, pp. 358~369. https://doi.org/10.2514/1.I010795
  15. Bertrand, S., Raballand, N. and Viguier, F., "Evaluating ground risk for road networks induced by uav operations," 2018 International Conference on Unmanned Aircraft Systems (ICUAS), June 2018, pp. 168~176.
  16. Zhang, X., Liu, Y., Zhang, Y., Guan, X., Delahaye, D. and Tang, L., "Safety assessment and risk estimation for unmanned aerial vehicles operating in national airspace system," Journal of Advanced Transportation, Vol. 2018, Article ID. 4731585, 2018, pp. 1~11.
  17. Shelley, A. V., "A model of human harm from a falling unmanned aircraft: Implications for UAS regulation," International Journal of Aviation, Aeronautics, and Aerospace, Vol. 3, No. 3, 2016, pp. 1~42.
  18. Lin, X., Fulton, N. and Westcott, M., "Target level of safety measures in air transportation - Review, validation and recommendations," Proceedings of the IASTED International Conference, October 2009, pp. 222~229.
  19. Hardwick, M. J., Hall, J., Tatom, J. W. and Baker, R. G., Approved Methods and Algorithms for DOD Risk-Based Explosives Siting, 4th Revision, U.S. Department of Defense Explosives Safety Board, VA, 2009, TR No. 14, p. 75.
  20. [Internet]. Available: https://aurelia-aerospace.com/product/aurelia-x6-pro/
  21. [Internet]. Available: https://data.kma.go.kr/
  22. [Internet]. Available: http://map.ngii.go.kr/
  23. [Internet]. Available: https://viewt.ktdb.go.kr/