DOI QR코드

DOI QR Code

Anti-inflammatory and Cartilage Protection Effects of Daeganghwal-tang in MIA-induced Osteoarthritis at Rats

대강활탕(大羌活湯)이 흰쥐에서 MIA로 유발된 골관절염에 미치는 항염증 및 연골 보호 효과

  • Kim, Ju-ran (Department of Acupuncture & Moxibustion medicine, College of Korean medicine, Daegu Haany University) ;
  • Lee, Jung Hee (Department of Acupuncture & Moxibustion medicine, College of Korean medicine, Daegu Haany University) ;
  • Lee, Yun Kyu (Department of Acupuncture & Moxibustion medicine, College of Korean medicine, Daegu Haany University) ;
  • Lee, Hyun-Jong (Department of Acupuncture & Moxibustion medicine, College of Korean medicine, Daegu Haany University) ;
  • Kim, Jae Soo (Department of Acupuncture & Moxibustion medicine, College of Korean medicine, Daegu Haany University)
  • 김주란 (대구한의대학교 한의과대학 침구의학교실) ;
  • 이정희 (대구한의대학교 한의과대학 침구의학교실) ;
  • 이윤규 (대구한의대학교 한의과대학 침구의학교실) ;
  • 이현종 (대구한의대학교 한의과대학 침구의학교실) ;
  • 김재수 (대구한의대학교 한의과대학 침구의학교실)
  • Received : 2021.08.19
  • Accepted : 2021.08.27
  • Published : 2021.08.31

Abstract

Objectives : The purpose of this study was to evaluate the effects of Daeganghwal-tang on knee cartilage in monosodium iodoacetate(MIA)-induced osteoarthritis rats. Methods : Forty SD rats were randomly divided into five groups(n=8/group): normal group was SD rats group injected with normal saline at left knee joint and administrated orally distilled water, control group was MIA-induced osteoarthritis SD rats group administrated orally distilled water, Indomethacin group was MIA-induced osteoarthritis SD rats group administrated orally indomethacin 2 mg/kg, DGHT(L) group was MIA-induced osteoarthritis SD rats group administrated orally 1280 mg/kg of Daeganghwal-tang, and DGHT(H) group was MIA-induced osteoarthritis SD rats group administrated orally 2560 mg/kg of Daeganghwal-tang. After orally administration of drugs for 4 weeks, gross appearance and histological analysis were used to evaluate the degree of knee cartilage damage. In addition, pro-inflammatory cytokines, bone degrade factor and bone defence factors were analyzed to investigate the anti-inflammatory and cartilage protection effects of Daeganghwal-tang. Also, hematological test, biochemical test, and liver and kidney tissue were analyzed to determine the safety of Daeganghwal-tang. Results : Daeganghwal-tang inhibited the damage of the knee cartilage, and significantly prevented the reduction in cartilage thickness. In addition, the pro-inflammatory cytokines and the bone degrade factor significantly decreased, and the bone defence factors significantly increased. In the safety assessment of Daeganghwal-tang, there were no significant differences among the experimental groups and no abnormal findings were observed. Conclusions : Daeganghwal-tang has anti-inflammatory effect, inhibits cartilage damage, and protects cartilage in MIA-induced osteoarthritis rats.

Keywords

References

  1. Korean acupuncture & moxibustion medicine society. Acupuncture medicine. Seoul (Korea): Hanmibook; 2016. p. 550, 564-8, 576-9, 583.
  2. Korean pharmacopuncture institute. Pharmacopuncturology. 2nd ed. Seoul (Korea): Elsevier Korea; 2011. p. 181-215.
  3. David JH, Sita BZ. Osteoarthritis. Lancet. 2019;393(10182):1745-59. https://doi.org/10.1016/S0140-6736(19)30417-9
  4. Carlson AK, Rawle RA, Wallace CW, Brooks EG, Adams E, Greenwood MC, et al. Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis. Osteoarthritis Cartilage. 2019;27(8):1174-84. https://doi.org/10.1016/j.joca.2019.04.007
  5. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159): 1789-858. https://doi.org/10.1016/s0140-6736(18)32279-7
  6. The society of Korean medicine rehabilitation. Korean rehabilitation medicine. 4th ed. Paju (Korea): Koonja Publishing; 2015. p. 102-16.
  7. Nelson AE, Allen KD, Golightly YM, Goode AP, Jordan JM. A systematic review of recommendations and guidelines for the management of osteoarthritis: The chronic osteoarthritis management initiative of the US bone and joint initiative. 2014;43(6):701-12. https://doi.org/10.1016/j.semarthrit.2013.11.012
  8. Kim HA. The management of arthritis. Journal of the Korean Medical Association. 2007;50(8):743-50. https://doi.org/10.5124/jkma.2007.50.8.743
  9. Yoh SB, Sul JU, Shin MS. Research trends on the treatment of knee osteoarthritis in Korean medicine. Korean Journal of Acupuncture. 2011;28(1):139-55.
  10. Park WT. Effects of Daebangpung-tang on the monosodium iodoacetate-induced osteoarthritis in rats [dissertation]. Jecheon: Semyung University; 2008.
  11. Lee KM. Effects of Samgieum treatment on the monosodium iodoacetate-induced osteoarthritis in rats [dissertation]. Jecheon: Semyung University; 2008.
  12. Kim DH. Suppression effects of Sopunghwalhyeoltang on the monosodium iodoacetate -induced osteoarthritis in rats [dissertation]. Jecheon: Semyung University; 2010.
  13. Kim DH. Effects of Bangkeehwangkee-tang treatment on the monosodium iodoacetate -induced osteoarthritis in rats [dissertation]. Naju: Dongsin University; 2013.
  14. Kim DH, Lee DE, Noh JW, Ahn YM, Ahn SY, Lee BC. A study of the co-administration of herbal and western medicines to hospitalized patients with osteoarthritis. The Journal of Internal Korean Medicine. 2018;39(2):97-106. https://doi.org/10.22246/jikm.2018.39.2.97
  15. Heo J. Treasured mirror of eastern medicine. 5th ed. Hadong (Korea): Dongeuibogam publisher; 2016. p. 1027.
  16. Bae BC. Standard clinical oriental medical prescription. Seoul (Korea): Seongbosa; 1995. p. 398-9.
  17. Jeong SH, Kim SJ, Seo IB. Anti-pathogenetic and curative effects of Taeganghwal-tang (daqianghuotang) on the collagen-induced arthritis in wistar rats. J Oriental Rehab Med. 2004;14(3):79-101.
  18. Lee HG, Jeong SH, Kim SS. Effects of Daiganghwaltang on change of IgG anticollagen antibody in type II collagen-induced asthritis. J of Oriental physio therapics. 1994; 4(1):87-94.
  19. Kim MK, Oh MS. Inhibitory effects of Gamidaeganghwal-tang (jiaweidaqianghuo-tang) on rheumatoid arthritis induced by type II collagen. J Oriental Rehab Med. 2009;19(2):89-102.
  20. An JH, Lee MJ. Effects of Daeganghwaltang(daqianghuoshang) on the carrageenan-induced arthritis in animal model. J Oriental Rehab Med. 2006;16(2):79-96.
  21. Seo YJ, Koo ST, Yang YJ, Kim S, Yoo IS, Lim KS. Analgesic effect of Daeganghwal- tang on a rat model of CFA-induced arthritis. The Korean Journal of Meridian &Acupoint. 2004;21(4):83-99.
  22. Seo IB, Park DS. Osteoarthritis model induced by monosodium iodoacetate: Good model for long-term drug efficacy test. Journal of Korean Medicine Rehabilitation. 2015;25(4): 21-8. https://doi.org/10.18325/jkmr.2015.25.4.21
  23. Kim HA, Cheon EJ. Animal model of osteoarthritis. J Rheum Dis. 2012;19(5):239-47. https://doi.org/10.4078/jrd.2012.19.5.239
  24. Shin KM, Ko IG, Kim SE, Jin JJ, Hwang L, Kim SH, et al. Low-frequency electroacupncture improves locomotor function after sciatic crushed nerve injury in rats. J Exerc Rehabil. 2018;14(6):927-33. https://doi.org/10.12965/jer.1836594.297
  25. Shao L, Liu Y, Xiao J, Wang Q, Liu F, Ding J. Activating metabotropic glutamate receptor 7 attenuates visceral hypersensitivity in neonatal maternally separated rats. Int J Mol Med. 2019;43(2):761-70.
  26. The Korean orthopaedic association. Orthopaedics. 8th ed. Seoul (Korea): The new medical journal; 2020. p. 430-8.
  27. Kim HA. Pharmacological treatment of osteoarthritis. Journal of the Korean Orthopaedic Association. 2010;13(1):16-22. https://doi.org/10.4055/jkoa.2010.45.1.16
  28. HIRA, NHIS. National health insurance statistical yearbook, 2019 [Internet]. Wonju: HIRA, NHIS. 2020 Oct [cited 2020 Nov 26]. Available from: https://www.hira.or.kr/bbsDummy.do?pgmid=HIRAA020045020000&brdScnBltNo=4&brdBltNo=2312&pageIndex=1#none.
  29. Brandt KD, Radin EL, Dieppe PA, van de Putte L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis. 2006;65:1261-4. https://doi.org/10.1136/ard.2006.058347
  30. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072. https://doi.org/10.1038/nrdp.2016.72
  31. Fu K, Robbins SR, McDougall JJ. Osteoarthritis: The genesis of pain. Rheumatology (Oxford). 2018;57(4):iv43-50. https://doi.org/10.1093/rheumatology/kex419
  32. Hsia AW, Emami AJ, Tarke FD, Cunningham HC, Tjandra PM, Wong A, et al. Osteophytes and fracture calluses share developmental milestones and are diminished by unloading. J Orthop Res. 2018;36:699-710.
  33. Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:412-20. https://doi.org/10.1038/nrrheum.2016.65
  34. Primorac D, Molnar V, Rod E, Jelec Z, Cukelj F, Matisic V, et al. Knee osteoarthritis: A review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes (Basel). 2020;11(8):854. https://doi.org/10.3390/genes11080854
  35. Lee DS. Effect of processed aralia continentalis radix extract on MIA-induced osteoarthritis in rats [dissertation]. Iksan: Wonkwang University; 2019.
  36. Kim CM, Park YK. The effects of different extracts of ostericum koreanum on the production of inflammatory mediators in LPS-stimulated RAW264.7 cells. Kor J Herbology. 2009;24(1):169-78.
  37. Park HJ, Bae GS, Kim DY, Seo SW, Park KB, Kim BJ, et al. Inhibitory effect of extract from ostericum koreanum on LPS-induced proinflammatory cytokines production in RAW264.7 cells. Kor J Herbology. 2008;23(3):127-34.
  38. Drugbank. Indomethacin [Internet]. Edmonton: Drugbank. 2020 Dec 9 [cited 2020 Dec 9]. Available from: https://go.drugbank.com/drugs/DB00328.
  39. Marker CL, Pomonis JD. The monosodium iodoacetate model of osteoarthritis pain in the rat. Methods Mol Biol. 2012;851:239-48. https://doi.org/10.1007/978-1-61779-561-9_18
  40. Wang ZM, Chen YC, Wang DP. Resveratrol, a natural antioxidant, protects monosodium iodoacetate-induced osteoarthritic pain in rats. Biomed Pharmacother. 2016;83:763-70. https://doi.org/10.1016/j.biopha.2016.06.050
  41. Lee SH, Kwon KD, Lee SW, Che SH, Ahn HS. Acetabular degeneration in osteonecrosis of the femoral head. Journal of Korean Orthopaedic association. 2004;39(3):239-46. https://doi.org/10.4055/jkoa.2004.39.3.239
  42. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. Normal cartilage structure, biochemistry, and metabolism: A review of the literature. J Oral Maxillofac Surg. 1995;53(8):924-9. https://doi.org/10.1016/0278-2391(95)90283-X
  43. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33-42. https://doi.org/10.1038/nrrheum.2010.196
  44. Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459. https://doi.org/10.1155/2014/561459
  45. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment on rheumatoid arthritis. Lancet. 2007;370(9602):1861-74. https://doi.org/10.1016/S0140-6736(07)60784-3
  46. Hulejova H, Baresova V, Klezl Z, Polanska M, Adam M, Senolt L. Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondralbone. Cytokine. 2007;38(3):151-6. https://doi.org/10.1016/j.cyto.2007.06.001
  47. Yang F, Zhou S, Wang C, Huang Y, Li H, Wang Y, et al. Epigenetic modifications of interleukin-6 in synovial fibroblasts from osteoarthritis patients. Sci Rep. 2017;7:1-11. https://doi.org/10.1038/s41598-016-0028-x
  48. Adamson A, Ghoreschi K, Rittler M, Chen Q, Sun HW, Vahedi G, et al. Tissue inhibitor of metalloproteinase 1 is preferentially expressed in Th1 and Th17 T-helper cell subsets and is a direct STAT target gene. PLoS One. 2013;8(3):e59367. https://doi.org/10.1371/journal.pone.0059367
  49. Tokito A, Jougasaki M. Matrix metalloproteinases in non-neoplastic disorders. Int J Mol Sci. 2016;17(7):1178. https://doi.org/10.3390/ijms17071178
  50. Wang M, Sampson ER, Jin H, Li J, Ke QH, Im HJ, et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther. 2013;15 (1):R5. https://doi.org/10.1186/ar4133
  51. Parrish AR. Matrix metalloproteinases and tissue remodeling in health and disease: Target tissues and therapy. San Diego (USA): Elsevier; 2017. p. 310.
  52. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol. 2000;18(5):1135-49. https://doi.org/10.1200/JCO.2000.18.5.1135
  53. Batra J, Robinson J, Mehner C, Hockla A, Miller E, Radisky DC, et al. PEGylation extends circulation half-life while preserving in vitro and in vivo activity of tissue inhibitor of metalloproteinases-1 (TIMP-1). PLoS One. 2012;7(11):e50028. https://doi.org/10.1371/journal.pone.0050028
  54. Li X, Fu X, Gao Y, Li H, Wang W, Shen Y. Expression of tissue inhibitor of metalloproteinases-1 and B-cell lymphoma-2 in the synovial membrane in patients with knee osteoarthritis. Exp Ther Med. 2018;15(1):885-9.
  55. Ko JH, Kang YM, Yang JH, KIM JS, Lee WJ, KIM SH, et al. Regulation of MMP and TIMP expression in synovial fibroblasts from knee osteoarthritis with flexion contracture using adenovirus-mediated relaxin gene therapy. Knee. 2019;26(2):317-29. https://doi.org/10.1016/j.knee.2019.01.010
  56. Lambert E, Dasse E, Haye B, Petitfrere E. TIMPs as multifacial proteins. Crit Rev Oncol Hematol. 2004;49(3):187-98. https://doi.org/10.1016/j.critrevonc.2003.09.008
  57. Hire JM, Evanson JL, Johnson PC, Zumbrun SD, Guyton MK, McPherson JCI, et al. Variance of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) concentrations in activated, concentrated platelets from healthy male donors. J Orthop Surg. 2014;9:29. https://doi.org/10.1186/1749-799X-9-29
  58. Helminen HJ, Hyttinen MM, Lammi MJ, Arokoski JPA, Lapvetelaine T, Jurvelin J, et al. Regular joint loading in youth assists in the establishment and strengthening of the collagen network of articular cartilage and contributes to the prevention of osteoarthosis later in life: A hypothesis. Journal of Bone and Mineral Metabolism. 2000;18(5):245-57. https://doi.org/10.1007/PL00010638
  59. Kim BS, Choi HI. Effect of intra-articular injection of sodium hyaluronate and polysulfated glycaosaminoglycan in equine degenerative joint disease. The Korean journal of veterinary clinical medicine. 1991;8(1):11-26.
  60. Zeng GQ, Chen AB, Li W, Song JH, Gao CY. High MMP-1, MMP-2, and MMP-9 protein levels in osteoarthritis. Meta-Analysis Genet Mol Res. 2015;14(4):14811-22. https://doi.org/10.4238/2015.November.18.46