알칼리 수전해를 위한 상용 음이온교환막에 관한 연구

박 주 왕·유 철 휘·황 갑 진[†]

호서대학교 일반대학원 그린에너지공학과 (2021년 8월 3일 접수, 2021년 8월 25일 수정, 2021년 8월 26일 채택)

Study on Commercially Available Anion Exchange Membrane for Alkaline Water Eectrolysis

Joo-Wang Park, Cheol-Hwi Ryu, and Gab-Jin Hwang^{,†}

Grad. School, Dept. Green Energy, Hoseo University, Asan City, Chungnam 31499, Korea (Received August 3, 2021, Revised August 25, 2021, Accepted August 26, 2021)

요 약: 알칼리 수전해용 격막으로 사용가능성을 평가하기 위해 5종류의 상용 음이온교환막의 열적안정성, 이온전도도, 내구성을 평가하였다. TGA (thermo-gravimetric analysis)로 분석한 열적안정성은 FAAM-PK-75와 FAAM-40 막이 다른 3종 류의 AEM, AHO, AHA 막과 비교하여 좋은 성능을 보였다. 25℃와 80℃, 7 M KOH 수용액에서의 이온전도도는 AEM막이 다른 막과 비교하여 약 4~17배 높은 값을 보였다. 25℃, 7 M KOH 수용액에서 측정한 내구성은 FAAM-PK-75막이 다른 막과 비교하여 안정하였다.

Abstract: To evaluate the possibility as a separator in alkaline water electrolysis, the thermal stability, ion conductivity and durability of 5 commercially available anion exchange membranes were tested. The thermal stability of FAAM-PK-75 and FAAM-40 membrane analyzed by thermo-gravimetric analysis (TGA) showed good performance compared to the other three types of AEM, AHO, and AHA membrane. The ion conductivity of AEM membrane measured in 7 M KOH solution at 25°C and 80°C had a higher value of about 4~17 times compared to the other membranes. The durability of FAAM-PK-75 tested in 7 M KOH solution at 25°C was high compared to the other membranes.

Keywords: hydrogen production, water electrolysis, alkaline water electrolysis, ion exchange membrane, anion exchange membrane

1. 서 론

수소는 산업용 전력생산, 자동차용 연료 등을 위한 대체가능한 에너지 담체로 인식되고 있다[1]. 수소는 에 너지 담체로서 실온에서 다른 연료들(예, 휘발유 44 MJ/kg)보다 높은 에너지 함량(수소 118 MJ/kg)을 가지 고 있다. 또한 수소의 이용은 화석연료의 사용에 따른 CO₂ 가스와 같은 온실가스 배출 등의 환경문제를 해결 할 수 있다[2].

수소는 지구상에 탄화수소와 같은 화합물과 물의 형 태로 존재하지만, 화석연료, 바이오매스, 물 등의 원료 로부터 열화학적, 전기화학적, 광화학적 공정을 통해 제 조할 수 있다[3-5].

수소제조 방법 중에서, 특히, 물의 전기분해를 이용 한 방법은 신재생 에너지원과의 접목을 고려할 때 가장 효율적이고 실용적인 방법으로 여겨지고 있다[6]. 물 전 기분해 수소제조 기술은 전기를 이용하여 수소를 물로 부터 직접 제조하는 방법으로, 화석연료 이용 제조방법 과 비교하여 수소를 제조할 때 지구환경 오염물질인 이 산화탄소의 배출이 없다.

물 전기분해를 이용한 수소제조 방법은 전해액으로 순수한 물을 사용하는 고분자 전해질 막 수전해(PEMWE,

[†]Corresponding author(e-mail: gjhwang@hoseo.edu; https://orcid.org/0000-0002-8350-8154)

polymer electrolyte membrane water electrolysis), 전기 분해에 필요한 전기 중 일부를 열에너지로 공급하는 방 식을 채택함으로서 효율을 높이고, 전해액으로 고온수 증기를 사용하는 고온 수증기 전기분해(HTSE, high temperature steam electrolysis), 전해액으로 알칼리 용액 을 사용하는 알칼리 수전해(AWE, alkaline water electrolysis)가 있다[6].

Fig. 1은 알칼리 수전해의 개념을 나타낸다.

Fig. 1. Concept of alkaline water electrolysis[6].

알칼리 수전해 방법은 오래전부터 알려진 수소제조 방법으로 전해액으로 10~20%의 NaOH 혹은 20~30% 의 KOH용액을 사용하며, 셀은 수산화이온(OH)만을 선택적으로 통과시키는 격막, 그리고, 수소와 산소를 발 생시키는 전극으로 구성된다.

알칼리 수전해 셀에는 초기 석면과 티탄산칼륨과 같 은 세라믹 산화물 또는 polypropylene과 polyphenylene sulfide와 같은 고분자를 활용한 히드록실(OH) 이온 전 도성을 갖는 다공성 다이어프램(porous diaphragm)을 사용하여, 양극과 음극 전해액을 분리시켰다[7-9]. 하지 만 다공성 다이어프램을 사용함으로서 생성된 수소와 산소가스의 혼합과 전해 효율이 저하되는 문제가 발생 한다. 따라서 이러한 문제점을 해결하기 위해 양쪽 극 액의 혼합을 방지함과 동시에 수산화이온의 선택투과 성이 높은 격막의 개발이 필요하며, 알칼리 수전해용 격막으로서 음이온만을 선택적으로 투과시키는 음이온 교환막이 적당하다[10]. 또한 알칼리 수전해용 음이온 교환막은 전해효율을 높이기 위해 수산화 이온(OH)의 높은 이온전도도를 가져야 하며, 알칼리 용액에 대한 내구성이 좋아야 한다.

음이온교환막(AEM, anion exchange membrane)은

위한 전기투석(ED, electrodialysis)[11-14], 수소발전 및 연료전지 자동차를 위한 연료전지(FC, fuel cell)[15-21], 염분차 발전을 위한 역전기투석(RED, reverse electrodialysis)[22], 전기 에너지의 저장을 위한 레독스 흐름 전지(RFB, redox flow battery)[23-29] 등에 넓게 사용 되고 있으며, 알칼리 수전해용으로도 연구개발이 활발 히 진행되고 있다[30-35]. 최근에는 고분자전해질 막 수전해와 같이 음이온교

도금산업에서 유용한 금속의 회수 및 해수 담수화 등을

최근에는 고문자전해설 딱 구전해와 같이 음이온교 환막에 전극을 코팅한 막전극접합체(MEA, membrane electrolyte assembly)를 활용한 음이온교환막 알칼리 수 전해(AEMWE, anion exchange membrane water electrolysis)에 관한 연구가 진행되고 있다[36-39].

본 연구에서는 알칼리 수전해용 격막으로 사용하기 위해 상용 음이온교환막의 막 특성 평가를 진행하였다. 막 특성평가는 KOH 수용액에서의 이온전도도와 내구성을 측정함으로서 진행하였다. 또한 TGA (thermo-gravimetric analysis)분석을 진행하여 막의 열적안정성을 평가하였다.

2. 실험

5종류의 상용 음이온교환막의 TGA분석 및 막 특성 을 측정하여 알칼리 수전해용 격막으로서 사용가능성 에 대해 평가하였다.

Table 1은 본 연구에서 평가한 5종류의 상용 음이온 교환막의 특징을 나타낸다.

 Table 1. Properties of 5 commercially available anion exchange membranes

Company name	Membrane name	Thickness ^{a)} (µm)	Membrane resistance ^{a)} $(\mathcal{Q} \cdot cm^2)$ in 0.5 M NaCl)
Fuji Film	Type10 AEM	125	1.7
Asahi Glass	AHO	300	20
Astom Co.	AHA	220	4.1
Fumatech Co.	FAAM-PK-75	67~76	-
	FAAM-40	37~43	-

^{a)} From company catalog.

2.1. TGA 분석

TGA분석은 Scinco M&T Co.의 TGAN-1000을 이용 하여 진행하였다. TGA분석은 막 샘플을 장치 내에 설 치한 후, 질소가스 분위기에서 온도를 25~500°C로 하 여 진행하였으며, 승온속도는 2 °C/min으로 하였다.

2.2. 막 특성

2.2.1. 막 저항

막 저항은 Fig. 2의 장치와 7 M (mol/L) KOH 수용 액을 이용하여 25°C와 80°C에서 측정하였다.

7 M KOH 수용액에서의 막 저항은 1 kHz의 주파수 에서 LCR메터(Furuka Co. PM-6304)를 이용하여 측정 하였다. 막 저항은 식 (1)로부터 계산하였다. 막의 유효 면적은 0.75 cm²이다.

$$R = (R_1 - R_2) \times S \tag{1}$$

여기서, R은 막 저항[*Ω* · cm²], R₁은 막을 주입했을 때의 저항[*Ω*], R₂는 막을 주입하지 않았을 때의 저항 [*Ω*], S는 막의 유효면적이다.

이온전도도(IC, ionic conductivity)는 식 (2)로부터 계 산하였다.

$$IC = \frac{1}{R} \times t \tag{2}$$

여기서, IC는 이온전도도 [S/cm], R은 막 저항 [Ω・ cm²], t는 막의 두께 [mm]이다.

Fig. 2. Measuring equipment of membrane resistance in 7 M KOH aq. solution.

2.2.2. 막의 내구성

막의 내구성 평가는 막을 25°C, 7 M KOH 수용액에 침전한 후, 침전 시간경과와 함께 7 M KOH 수용액에 서의 막 저항 변화를 측정함으로서 진행하였다.

3. 결과 및 고찰

3.1. TGA 분석

Fig. 3은 TGA분석 결과를 나타낸다.

AEM막의 경우, 약 230°C에서 질량 변화가 시작되어 온도 증가와 함께 서서히 질량이 감소하였다. AHO와 AHA 막의 경우, 2단계에 걸친 질량 변화를 보였다. AHO막의 경우 약 210°C에서 질량 감소를 보인 후, 약 230°C까지 질량을 유지하다가 약 400°C 부근에서 질량 이 급격히 감소하였다. AHA막의 경우, 약 200°C에서 질량 감소를 보인 후, 약 230°C까지 질량을 유지하다가 약 400°C 부근에서 질량이 급격히 감소하였다. FAAM-PK-75와 FAAM-40 막의 경우, TGA의 시험 영역인 500°C까지 커다란 질량손실은 보이지 않고, 온도가 증 가하여도 질량은 그대로 유지하였다.

AEM막의 경우, 약 230°C에서 온도증가와 함께 질량이 지속적으로 감소하는 것은 음이온교환기의 쪼개짐과 AEM 막을 이루고 있는 고분자의 주 사슬의 분해에 의한 것으 로 판단된다. AHO와 AHA 막의 경우, 약 200~210°C 부 근에서 일차 질량감소가 일어나는 것은 음이온교환기 의 쪼개짐에 의한 것이고, 약 400°C 부근에 일어나는 이차 질량 감소는 막을 이루고 있는 고분자의 주 사슬의 분해에 의한 것으로 판단된다.

Fig. 3. Thermal stability of the membrane analyzed by TGA.

Table 2.	Membrane	resistances	and	ion	conductivities	of	the	commercially	available	anion	exchange	membranes	measured	in
7 M KC	OH solution	at 25°C an	d 80	°C										

		Measured	at 25°C	Measured at 80°C		
Company name	Membrane name	Membrane resistance $(\mathcal{Q} \cdot cm^2)$	Ion conductivity $\times 10^{-2}$ (S/cm)	Membrane resistance $(\mathcal{Q} \cdot cm^2)$	Ion conductivity $\times 10^{-2}$ (S/cm)	
Fuji Film	Type10 AEM	0.21	6.7	0.1	12.6	
Asahi Glass	АНО	4.74	0.66	1.93	1.61	
Astom Co.	AHA	1.17	1.7	0.67	3.0	
Fumatech Co.	FAAM-PK-75	1.57	0.45	1.0	0.71	
	FAAM-40	0.57	0.88	0.6	0.8	

Fig. 3의 결과로부터 5종류의 상용 막 중에서 FAAM-PK-75와 FAAM-40 막이 다른 3종류의 AEM, AHO, AHA 막과 비교하여 열적 안정성이 뛰어나다는 것을 알 수 있었다.

3.2. 막 특성

3.2.1. 막 저항과 이온전도도

Table 2는 25°C와 80°C에서 측정한 7 M KOH 수용 액에서의 막 저항과 이온전도도를 나타낸다.

Table 2를 보면 알 수 있듯이, 25℃, 7 M KOH 수용 액에서 막 저항이 가장 낮은 것은 AEM막이었으며, 다 음으로 FAAM-40 < AHA < FAAM-PK-75 < AHO막 의 순서로 낮은 값을 보였다. 이온전도도는 AEM막이 가장 높았으며, 다음으로 AHA > FAAM-40 > AHO > FAAM-PK-75막의 순서로 높은 값을 보였다. 막 저항 과 이온전도도의 경향이 서로 다른 이유는 이온전도도 는 막 두께에 비례하기 때문으로 판단된다.

80°C, 7 M KOH 수용액에서 막 저항은 AEM막이 가장 낮았으며, 다음으로 FAAM-40 ≒ AHA < FAAM- PK-75 < AHO막의 순서로 낮은 값을 보였다. 이온전도도는 AEM막이 가장 높았으며, 다음으로 AHA > AHO > FAAM-40 > FAAM-PK-75막의 순서로 높은 값을 보였다. AEM막의 이온전도도가 높은 이유는 Table 2에서 보여주는 바와 같이 낮은 막 저항을 갖기 때문으로 판단된다.

일반적으로 막 저항은 온도가 올라갈수록 전해액의 전도성 향상과 함께 낮아지는 경향을 보인다. Table 2 를 보면 알 수 있듯이, 막 저항은 모든 막에서 온도가 증가함에 따라 낮아지는 경향을 보였으며, 특히 AEM, AHO, AHA 막의 경우 80°C에서의 막 저항은 25°C에 서의 막 저항 값의 약 1/2의 값을 보였다.

25°C와 80°C에서 측정한 7 M KOH 수용액에서의 이온전도도는 AEM막이 다른 막과 비교하여 약 4~17 배 높은 값을 보였다. 따라서 Table 2의 결과로부터 7 M KOH 수용액에서의 이온전도도 면에서 AEM막이 알칼리 수전해용 음이온교환막으로 유리할 것으로 판 단되었다.

3.2.2. 막의 내구성

Fig. 4는 25°C, 7 M KOH 수용액에서 측정한 침적시 간과 막 저항의 관계를 나타낸다.

AHO 막의 경우, 7 M KOH 수용액에 침적한 1개월 후에 막 저항은 증가하였으며, 1개월 후부터는 침적시간 경과와 함께 감소하여 침적시간 3개월 후에는 초기와 비슷한 값을 가졌다. AHA와 AEM 막의 경우, 막 저항은 침적 2개월까지 서서히 증가한 후, 2개월 후부터 서서히

Fig. 4. Membrane resistance with an increase of soaking time in 7 M KOH solution.

감소하여 3개월 후에 초기와 비슷한 값을 보였다. FAAM-40막의 경우, 막 저항은 침적 1개월 후 증가한 후 침적시간 경과와 함께 감소하여 침적시간 2개월 후 에는 초기와 비슷한 값을 가졌으며, 3개월 후까지 그 값을 유지하였다. FAAM-PK-75막의 경우, 막 저항은 침적시간 경과와 함께 약간 증가하는 경향을 보이나, 침적 시간 3개월까지 거의 비슷한 값을 보였다.

FAAM-PK-75막은 침적시간이 경과하여도 거의 비슷 한 막 저항을 가지는 것으로부터 다른 막에 비해 내구 성이 높을 것으로 판단된다.

Fig. 4의 결과로부터 25°C, 7 M KOH 수용액에서의 내구성 면에서 FAAM-PK-75막이 알칼리 수전해용 음 이온교환막으로 유리할 것으로 판단되었다.

상용 음이온교환막의 알칼리 수전해용 격막으로서 사용가능성을 명확히 판단하기 위해서는 고온(50°C 이 상), 7 M KOH 수용액에서의 내구성 평가에 관한 연구 가 필요하다고 사료된다.

4. 결론

본 연구에서는 알칼리 수전해용 격막으로 사용가능 성을 평가하기 위해 5종류의 상용 음이온교환막의 열적 안정성, 이온전도도, 내구성을 평가하여 다음과 같은 결 론을 얻었다.

- TGA로 분석한 열적안정성 평가결과, FAAM-PK-75
 와 FAAM-40 막이 다른 3종류의 AEM, AHO, AHA 막과 비교하여 열적 안정성이 뛰어나다는 것을 알 수 있었다.
- 2) 25°C와 80°C, 7 M KOH 수용액에서의 이온전도 도를 측정한 결과, AEM막이 가장 높은 값인 12.6×10⁻² S/cm를 보였으며, 다음으로 AHA > AHO > FAAM-40 > FAAM-PK-75막의 순서로 높은 값을 보였다.
- 3) 25°C, 7 M KOH 수용액에서 내구성을 측정한 결과, FAAM-PK-75막이 7 M KOH 수용액에서의 침적시간 3개월 동안 막 저항이 크게 변하지 않음 으로서 좋은 내구성을 보였다.
- 4) 실험 결과로부터, 알칼리 수전해용 격막으로서 이 온전도도 면에서는 AEM막이, 내구성 및 열적안 정성 면에서는 FAAM-PK-75막이 유리하다는 것 을 알 수 있었다.

감 사

본 연구는 중소벤처기업부의 "중소기업기술혁신개발 사업(S2840782)"으로 추진된 것으로 중소벤처기업부의 재정지원에 감사드립니다.

Reference

- I. Vincent, D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review", *Renewable and Sustainable Energy Reviews*, 81, 1690 (2018).
- G.-J. Hwang, H.-S. Choi, "Hydrogen production systems through water electrolysis", *Membr. J.*, 27(6), 477 (2017).
- X. Wenguo, C. Yingying, "Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors", *Energy Fuels*, 21, 2272 (2007).
- S. Ahmed, M. Krumpelt. "Hydrogen from hydrocarbon fuels for fuel cells", *Int. J. Hydrogen Energy*, 26, 291 (2001).
- M. Ni, DYC. Leung, MKH. Leung, K. Sumathy, "An overview of hydrogen production from biomass", *Fuel Process Technol*, 87, 461 (2006).
- G.-J. Hwang, K.-S. Kang, H.-J. Han and J.-W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", *Trans. of the Korean Hydrogen and New Energy Society*, 18, 95 (2007).
- H. Wendt, H. Hofmann, "Ceramic diaphragms for advanced alkaline water electrolysis", *J. Appl. Elec*trochem., **19**, 605 (1989).
- V. Rosa, "New materials for water electrolysis diaphragms", *Int. J. Hydrogen Energy*, 20, 697 (1995).
- W. Hu, "A novel cathode for alkaline water electrolysis", Int. J. Hydrogen Energy, 22, 621 (1997).
- H-S. Choi, C-H. Ryu, S-G. Lee, C-S. Byun, G-J. Hwang, "Study on anion exchange membrane for the alkaline electrolysis", *Trans. of the Korean Hydrogen and New Energy Society*, **22**(2), 184 (2011).

- G.-J. Hwang, H. Ohya, "Preparation of anion exchange membrane based on block copolymers. Part I: Amination of the chloromethylated copolymers", *J. Membr. Sci.*, 140, 195 (1998).
- M. Khan, C. Zheng, A. N. Mondal, Md. Masem Hossain, B. Wu, K. Emmanuel, L. Wu, T. Xu, "Preparation of anion exchange membrane from BPPO and dimethylethanolamine for electrodialysis", *Desalination*, **402**, 10 (2017).
- Y. Liu, S. Yang, Y. Chen, J. Liao, A. Sotto, J. Shen, "Preparation of water-based anion exchange membrane from PVA for antifouling in the electrodialysis process", *J. Membr. Sci.*, 570, 130 (2019).
- S. Doi, M. Yasukawa, Y. Kakihana, M. Higa, "Alkali stack on anion exchange membranes with PVC backing and binder: effect on performance and correlation between them", *J. Membr. Sci.*, 573, 85 (2019).
- X. Zheng, S. Song, J. Yang, J Wang, L. Wang, "4-formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell", *Euro. Poly. J.*, **112**, 581 (2019).
- J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, "Long-branched and densely functionalized anion exchange membranes for fuel cells", *J. Membr. Sci.*, 581, 82 (2019).
- Q. Ge, X. Liang, L. Ding, J. Hou, J. Miao, B. Wu, Z. Yang, T. Xu, "Guiding the self-assembly of hyper-branched anion exchange membranes utilized in alkaline fuel cells", *J. Membr. Sci.*, 573, 595 (2019).
- M. Irfan, E. Bakangura, N. U. Afsar, Md. Masem Hossain, J. Ran, T. Xu, "Preparation and performance evaluation of novel alkaline stable anion exchange membranes", *J. Power. Soc.*, 355, 171 (2017).
- B. Eriksson, H. Grimler, A. Carlson, H. Ekstrom, R. W. Lindstrom, G. Lindbergh, C. Lagergren, "Quantifying water transfer in anion exchange membrane fuel cells", *Int. J. Hydrogen Energy*, 44, 4930 (2019).
- J. Hou, X. Wang, Y. Liu, Q. Ge, Z. Yang, L. Wu, T. Xu, "Witting reaction constructed an alkaline

stable anion exchange membrane", J. Membr. Sci., 518, 282 (2016).

- C.-H. Woo, "Current patents and papers research trend of fuel cell membrane", *Membr. J.*, 26(6), 407 (2016).
- J.-P. Hwang, C.-H. Lee, Y.-T. Jeong, "Research trends and prospects of reverse electrodialysis membranes", *Membr. J.*, 27(2), 109 (2017).
- G. Shukla, V. K. Shahi, "Amine functionalized graphene oxide C16 chain grafted with poly(ether sulfone) by DABCO coupling: anaion exchange membrane for vanadium redox flow battery", J. Membr. Sci., 575, 109 (2019).
- L. Zeng, T. S. Zhao, L. Wei, H. R. Jiang, M.C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: current status and challenges", *Applied Energy*, 233, 622 (2019).
- J.-M. Lee, M.-S. Lee, K.-S. Nam, J-D. Jeon, Y.-G. Yoon, Y.-W. Choi, "A study on the effect of different functional groups in anion exchange membranes for vanadium redox flow batteries", *Membr. J.*, 27(5), 415 (2017).
- D.-J. Kim, S.-Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", *Membr. J.*, 22(5), 285 (2012).
- J. Hou, Y. Liu, Y. Liu, L. Wu, Z. Yang, T. Xu, "Self-healing anion exchange membrane for pH 7 redox flow batteries", *Chem. Eng. Sci.*, 201, 167 (2019).
- G.-J. Hwang, S.-W. Kim, D.-M. In, D.-Y. Lee, C.-H. Ryu, "Application of the commercial ion exchange membrane in the all-vanadium redox flow battery", *J. Ind. Eng. Chem.*, **60**, 360 (2018).
- H.-S. Choi, Y.-H. Oh, C.-H. Ryu, G.-J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", *J. Taiwan Inst. Chem. Eng.*, 45, 2920 (2014).
- G. J. Hwang, S.-G. Lim, S.-Y. Bong, C.-H. Ryu, H.-S. Choi, Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis, *Korean J. Chem. Eng.*, 32(9), 1896 (2015).

- Y.-C. Cao, X. Wu and K. Scott, A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalyst, *Int. J. Hydrogen Energy*, **37**, 9524 (2012).
- X. Wu and K. Scott, A polymethacrylate-based quaternary ammonium OH- ionomer binder for nonprecious metal alkaline anion exchange membrane water electrolysers, *J. Power Sources*, **214**, 124 (2012).
- E. Park, C. B. Capuano, K. E. Ayers, C. Bae, Chemically durable polymer electrolytes for solid-state alkaline water electrolysis, *J. Power Sources*, 375, 367 (2018).
- L. A. Diaz, R. E. Coppola, G. C. Abuin, R. Escudero-Cid, D. Herranz, P. Ocon, Alkali-doped polyvinyl alcohol-polybenzimidazole membranes for alkaline water electrolysis, *J. Memb. Sci.*, 535, 45 (2017).
- D. Aili, M. K. Hansen, J. W. Andreasen, J. Zhang,
 J. O. Jensen, N. J. Bjerrum, Q. L. I., Porous poly

(perfluorosulfonic acid) membranes for alkaline water electrolysis, J. Memb. Sci., 493, 589 (2015).

- A. Y. Faid, L. Xie, A. O. Barnett, F. Seland, D. Kirk, S. Sunde, "Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis", *Int. J. Hydrogen Energy*, 45(53), 28272 (2020).
- I. Vincent, D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review", *Renew. Sustain. Energy Rev.*, 81, 1690 (2018).
- H. Ito, N. Kawaguchi, S. Someya, T. Munakata, "Pressurized operation of anion exchange membrane water electrolysis", *Electrochim. Acta*, 297, 188 (2019).
- I. Vincent, A. Kruger, D. Bessarabov, "Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchaneg membrane electrolysis", *Int. J. Hydrogen Energy*, 42, 10752 (2017).