https://doi.org/10.14775/ksmpe.2021.20.09.104

기저판의 탄성에 따른 유연촉각센서의 성능변화 연구

김송호*, 김호찬**, 이인환***^{,#}

*티엔알바이오팹, **안동대학교 기계자동차공학과, ***충북대학교 기계공학부

Study on the Performance of Flexible Tactile Sensors According to the Substrate Stiffness

Song Ho Kim*, Ho-Chan Kim**, and In Hwan Lee***,#

*T&R BoFab, **Andong National University, ***Chungbuk National University

(Received 28 July 2021; received in revised form 17 August 2021; accepted 23 August 2021)

ABSTRACT

Tactile sensors and integrated circuits that detect external stimuli have been developed for use in various industries. Most tactile sensors have been developed using the MEMS(micro electro-mechanical systems) process in which metal electrodes and strain sensors are applied to a silicon substrate. However, tactile sensors made of highly brittle silicon lack flexibility and are prone to damage by external forces. Flexible tactile sensors based on polydimethylsiloxane and using a multi-walled carbon nano-tube mixture as a pressure-sensitive material are currently being developed as an alternative to overcome these limitations. In this study, a manufacturing process of pressure-sensitive materials with low initial electrical resistance is developed and applied to the fabrication of flexible tactile sensors. In addition, flexible tactile sensors are developed with pressure-sensitive materials dispensed on a substrate with flexible mechanical properties. Finally, a study is conducted on the change in electrical resistance of pressure-sensitive materials according to the modulus of elasticity of the substrate.

Key Words : Flexible Tactile Sensor(유연촉각센서), Multi-walled Carbon Nano Tubes(다중벽 탄소 나노튜브), Polydimethylsiloxane(PDMS)

1. 서 론

촉각센서는 외부 환경변화를 측정할 수 있기 때 문에 다양한 형태로 개발되고 있다^[1-3]. 대부분의 촉 각센서는 실리콘 기저판 위에 금속 전극과 스트레 인 센서로 구성되며 주로 MEMS (Micro Electro Mechanical System) 공정으로 개발되고 있다. 하지 만 높은 취성을 가지는 실리콘을 주재료로 제작된 촉각센서들은 유연성이 부족하며 또한 높은 취성으

Corresponding Author : anxanx@chungbuk.ac.kr Tel: +82-43-261-3161, Fax: +82-43-263-2441 로 인해 손상되기 쉽다^[4-7]. 이런 한계를 극복하기 위한 대안으로서 유연한 폴리머 재료를 기반으로 하는 촉각센서들이 개발되고 있다^[8-9]. 특히 PDMS (Polydimethylsiloxane)를 기반으로 하고 MWCNTs (Multi-Walled Carbon Nano Tubes) 혼합물을 압력감 응재로 이용하는 유연 촉각센서들에 대한 연구^[10-11] 들이 활발하게 진행되고 있으나, 압력감응재의 초 기 전기저항이 높고 또한 기저판 재료의 탄성에 따 른 센서의 성능변화에 대한 고려가 없었다.

이에 본 연구에서는 센서가 포함된 집적회로에 적용할 수 있는 낮은 초기 전기저항을 갖는 압력감 응재의 제작 공정을 개발하고 이를 유연 촉각센서의

Copyright © The Korean Society of Manufacturing Process Engineers. This is an Open-Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 License (CC BY-NC 3.0 http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

(b) Improved Process Fig. 1 SEM photographs of pressure sensitive materials

제작에 적용하고자 하였다. 즉, 기존 연구^[8]의 압력 감응재 제작 공정에서 전기저항에 크게 영향을 미 치는 요인을 파악하고 이를 개선하여 초기 전기저 항을 낮게 유지할 수 있는 개선된 제작공정을 개발 하였다. 또한, 유연한 기계적 성질을 갖는 기저판 위에 압력감응제가 성형된 유연촉각센서를 개발하 였다. 그리고 유연촉각센서를 구성하는 기저판의 탄성계수에 따른 압력감응재의 전기저항 변화에 대 한 연구를 수행하였다.

2. 압력감응재의 개선 연구

2.1 압력감응재의 구성

기존 연구^[8]를 통해 개발된 압력감응재는 MWCNTs, PDMS, SDS(Sodium Dodecyl Sulfate) 그 리고 톨루엔(Toluene) 의 혼합물이다. 여기서 MWCNTs는 압력감응재가 전기 전도성을 가지면서 외력이 가해졌을 때 입자 사이의 평균 거리가 변화 하여 전기저항이 변화하는 역할을 한다. PDMS는 압력감응재 혼합물의 가소성을 갖게 해 준다. 그리 고 톨루엔이 혼합되면 MWCNTs 입자의 분산을 증 대시키면서 동시에 압력감응재 혼합물의 점성을 낮 추게 된다. 이들 재료들은 자석 교반기와 초음파 분산기를 이용해서 혼합되어 압력감응재가 제작되 었다. 그리고 제작된 압력감응재에 외부 압력이 가 해지지 않은 상태의 초기 전기저항은 약 60 k요정 도이다.

한편, 이와 같은 공정으로 제작된 압력감응재의 초기 전기저항은 혼합물 내의 MWCNTs 입자들이 얼마나 균일하게 분포되는지에 따라서 달라진다. Fig. 1 (a)는 기존 연구에서 제작된 압력감응재의 단면을 전자현미경으로 촬영한 사진이다. Fig. 1 (a) 에서 알 수 있듯이 압력감응재 내부에 분포된 MWCNTs 입자들이 국부적으로 응집되어 있다. 따 라서 본 연구에서는 압력감응재를 제작하는 기존 공정을 개선하여 MWCNTs 입자들이 보다 고르게 분포하도록 하여 초기 전기저항을 보다 낮추고자 하였다.

2.2 압력감응재 제작공정

본 연구에서는 압력감응재 내부의 MWCNTs 입 자들을 보다 고르게 분산시키면서 동시에 기존 연 귀^[8]보다 제작공정을 단축시키고자 하였다. 즉, 기 존 연구에서는 MWCNTs 입자들을 분산시키기 위 해서 초음파 분산기와 자석 교반기를 각각 5 분씩 번갈아가며 사용하였다. 이때, 자석 교반기는 용기 내의 혼합물을 고르게 섞는 역할을 하지만 높은 점 도로 인하여 혼합물 내의 MWCNTs 입자를 초음파 분산기보다 원활하게 분산시키지 못한다. 그리고 초음파 분산기는 MWCNTs 입자를 보다 원활하게 분산시키지만 국부적으로만 MWCNTs 입자를 분산 시킨다. 따라서 용기에 담긴 혼합물 전체를 섞으면 서 동시에 MWCNTs 입자들을 더욱 고르게 분산시 킬 필요성이 있다.

이에, 본 연구에서는 자석 교반기와 초음파 분산 기를 동시에 사용하여 혼합물 내의 MWCNTs 입자 들을 분산시켰다. 즉, 자석 교반기를 10분간 동작시 키면서 용기 내의 혼합을 지속적으로 유동시켰다.

Fig. 2 Widths of dispensed pressure-sensitive material according to feed rate and applied pressure.

그리고 동시에 초음파 분산기를 20초 작동 / 5초 정지를 반복하였다. Fig. 1(b)는 개선된 공정을 통해 서 제작된 압력감응재의 전자현미경 사진으로서 압 력감응재 내부에 MWCNTs 입자들이 보다 고르게 분포되어 있음을 알 수 있다. 한편 개선된 공정으 로 제작된 압력감응재는 5k û 이내의 초기 전기저 항을 가지며 이는 기존 연구에서^[8] 개발된 압력감 응재의 초기 전기저항과 비교하였을 때 약 8.3%이 다.

2.3 압력감응재의 성형 특성

제작된 액체 상태의 압력감응재는 공압을 이용한 직접 주사(direct writing) 방식으로 기저판 위에 토 출 성형되게 된다. 토출 성형된 압력감응재의 폭과 높이는 센서의 물리적 해상도와 전기적 특성에 영 향을 주게 된다. 본 연구에서는 기존 연구^[8]를 통해 개발된 직접주사 시스템을 이용하여 토출 압력과 주사 속도에 따라 PDMS 기저판 위에 성형된 압력 감응재의 선폭과 높이를 측정하였다. 토출 압력은 100kPa부터 280kPa까지 20kPa씩 증가시키며 실험하 였다. 또한 주사 속도는 100mm/min부터 1,000mm/min 까지 100mm/min씩 증가시켜 실험하였다. 이때 노즐 의 내경은 0.26mm 이다. 성형된 압력감응재의 선폭 및 높이는 실체 현미경 및 치수 측정 소프트웨어를 이용하여 측정하였다.

Fig. 2는 토출 성형된 압력감응재의 선폭을 측정 한 결과를 정리한 그래프이다. Fig. 2에서 알 수 있 듯이 토출 압력이 증가할수록 선폭이 증가하며, 재 료를 토출하는 노즐의 이송 속도가 증가할수록 선 폭이 감소하였다. 이때 최대 선폭은 토출 압력 260kPa 및 주사 속도 100mm/min에서 1.46mm, 그리 고 최소 선폭은 토출 압력 140kPa 및 주사 속도 1,000mm/min에서 0.28mm이다.

Fig. 3은 토출 성형된 압력감응재의 높이를 측정 한 결과로서 압력감응재의 토출 압력이 증가할수록 높이가 증가하고 주사 속도가 증가할수록 높이가 감소하였다. 이때 최대 높이는 토출 압력 280kPa 및 주사 속도 100mm/min에서 0.62mm, 그리고 최소 높이는 토출 압력 160kPa 및 주사 속도 1,000mm/min에서 0.08mm이다.

3. 기저판의 탄성에 따른 유연촉각센서의 전기저항 변화

3.1 유연촉각센서의 구조 및 제작 공정

본 연구에서 개발된 압력감응재가 적용된 유연 촉각센서는 적절한 유연성을 갖도록 센서 모재가 되는 기저판으로서 PDMS가 이용되었다. 즉, PDMS 를 주제와 경화제를 혼합하여 경화시키고 그 위에 제작된 압력감응재를 직접주사 공정으로 성형하였다.

Remove from Mold

Fig. 4 Flexible tactile sensor fabrication process.

Fig. 5 Experimental set-up for electrical resistance change of flexible tactile sensor.

Fig. 4는 유연촉각센서의 제작 공정이다. 액체 상 태의 PDMS가 기저판의 형상을 갖도록 몰드를 제 작하였다. 몰드는 PLA(Polylactic acid) 재료를 FFF(Fused Filament Fabrication) 방식의 적층제조장 치(Cubicon 3DP 110F, Hynision system Co.)를 이용 하여 성형하였다. 성형된 몰드에 PDMS를 주제와 경화제를 혼합하여 붓고 90 ℃의 고온 챔버에서 2 시간동안 가열하여 기저판을 제작하였다. 기저판 위에 전기적 연결을 위한 핀 헤더를 부착한 후 그 위에 압력 감응제를 직접 주사방식으로 토출하여 성형하였다. 이를 다시 90 ℃의 고온 챔버에서 2시 간동안 가열하여 유연 촉각센서를 제작하였다.

3.2 PDMS의 탄성에 따른 유연촉각센서 의 전기저항 변화

PDMS는 주재와 경화제가 혼합되면 경화되게 되 며, 이 때 주제와 경화제의 혼합비에 따라 서로 다 른 탄성계수를 갖는다. 이에 본 연구에서는 압력감 응재가 토출되는 PDMS 기저판의 탄성계수가 압력 감응재 전기저항 값의 변화에 미치는 영향에 대해 연구하였다. 즉, 서로 다른 탄성계수를 갖는 PDMS 기저판 위에 압력감응재를 각각 성형한 유연촉각센 서 시편을 제작하고 시편에 가해지는 외력 변화가 서로 다른 탄성계수를 갖는 시편의 전기저항의 변 화에 주는 영향을 실험적으로 파악하였다.

Fig. 5는 실험장치의 구성을 나타낸 사진이다. 센 서에 압력을 가하기 위해 지름 14 mm의 팁을 갖는 디지털 푸시풀 게이지 (Digital push & pull gauge, SH-200, SUN DOO Instrument)를 이용하였다. 푸시 풀 게이지를 아래로 이송하면서 가해지는 힘과 변 위는 디지털 푸시풀 게이지에 의해서 측정되며, 시 편의 전기저항 변화는 디지털 멀티미터로 측정되었 다. 한편, 푸시풀 게이지에 의해서 시편에 가해지는 힘은 0 N부터 10 N까지 1 N씩 증가시켰다.

기저판의 탄성계수 변화에 따른 기저판 위에 토 출된 압력감응재의 전기저항 변화를 파악하기 위해 서로 다른 탄성계수를 갖는 3가지의 유연촉각센서 시편을 제작하였다. 제작된 시편들은 PDMS의 질량 대비 주제와 경화제의 혼합 비율이 각각 6, 8 그리 고 10 %이다. 그리고 이에 따라 만들어진 PDMS 기저판의 탄성계수는 각각 1.091, 1.647 그리고 2.198 MPa이다. 제작된 기저판 위에 동일한 조건으 로 압력감응제를 각각 주사하여 서로 다른 기저판 탄성계수를 갖는 유연촉각센서 시편들을 제작하였 다.

Fig. 6 Displacement and force change according to different Modulus of Elasticity.

Fig. 7 Electrical resistance change for applied pressure of different Modulus of Elasticity

이때 압력감응재는 내경 0.26 mm 의 노즐을 이 용하여 토출하였으며, 노즐의 이송속도 300 mm/min, 그리고 토출 압력은 200 kPa 이다. 이에 따라 토출 성형된 압력감응재의 폭은 0.50 mm 그 리고 높이는 0.37 mm 이다. 제작된 모든 시편의 초 기 전기저항은 약 2.4 k Ω로 동일하다.

Fig. 6은 푸시풀 게이지를 아래방향으로 이송하 였을 때 유연 촉각센서 기저판의 탄성계수에 따라 촉각센서에 가해지는 힘과 푸시풀 게이지의 이송 변위를 측정한 것을 정리한 그래프이다. Fig. 6에서 알 수 있듯이 동일한 힘이 가해지더라도 탄성계수 가 작을수록 기저판의 변형이 더 크게 나타난다.

Fig. 7은 푸시풀 게이지에 의해 가해진 힘을 팁 직경을 이용하여 압력으로 변환한 후, 시편에 가해 진 압력 변화에 따라 압력감응재의 전기저항 변화 를 정리한 그래프이다. Fig. 7에서 알 수 있듯이 동 일한 압력에서 기저판의 탄성계수가 클수록 전기저 항 값의 변화가 크게 나타남을 알 수 있다.

한편, PDMS로 만들어진 기저판의 두께방향으로 압력이 가해지게 되면 그 두께가 변화하며, 동일한 압력에서는 강성이 보다 큰 기판의 변형이 더 작 다. 이 때 강성이 보다 큰 기저판 위에 성형된 압 력감응제에는 기저판의 반작용력에 의해 국부적으 로 보다 큰 압력이 가해지게 된다. 따라서 압력감 응제 혼합물 내부의 MWCNTs 입자가에 의해 형성 된 전도성 네트워크가 더욱 현저하게 파열되어 압 력감응제 전체의 전기 저항이 증가한다. 따라서 Fig. 6 및 Fig 7과 같이 동일한 압력에서도 기저판 의 탄성계수에 따라 서로 다른 전기저항의 변화를 보이게 된다.

이상의 결과에서 알 수 있듯이, 본 연구에서 개 발된 유연촉각센서는 기저판의 탄성계수가 작아 유 연할수록 압력변화에 대한 전기저항의 변화가 작게 나타난다. 따라서 향후 다양한 형상의 유연 촉각센 서를 개발할 때 사용 목적에 맞는 감지범위와 민감 도를 갖도록 설계가 가능 할 것으로 기대된다.

4. 결 론

본 연구에서는 MWCNTs와 PDMS 기반 압력감응 재의 개선된 제작 공정을 제안하고, 기저판의 탄성 계수에 따른 유연촉각센서를 구성하는 압력감응재 의 전기저항 변화를 연구하였다. 본 연구를 통하여 다음과 같은 결론을 얻었다.

- 기존 연구에서 개발된 압력감응재의 제작 공정 을 개선하여 공정 수를 단축시켰으며, 또한 압 력감응재의 초기 전기저항을 기존 연구 대비 약 91 % 이상 감소시킬 수 있었다.
- 2. 본 연구에서 개발된 유연촉각센서는 기저판의

탄성계수가 작아 유연할수록 압력변화에 대한 전기저항의 변화가 작게 나타난다. 이 결과는 향후 다양한 형상의 유연 촉각센서를 개발할 때 사용 목적에 맞는 감지범위와 민감도를 갖도록 설계가 가능 할 것으로 기대된다.

후 기

"이 논문은 충북대학교 국립대학육성사업(2020)지 원을 받아 작성되었음."

REFERENCES

- Kim, W. H., Kim, K., Lee, K. R., Lee, D.-S., Shin, K.-S., Cho, N.-K., and Park, K.-B., "Si based 3-axis tactile sensor with an integrated CMOS switching circuit", Proceedings of the 13th International Conference on Advanced Robotics (ICAR 2007), pp. 384-388, 2007.
- Kim, M. S., Park, Y. K., and Kwon, S. Y., "Tactile device That Mimics Human's Sensory system", Physics & High Technology, Vol. 19, pp. 15-22, 2010.
- Kim, J. H., Lee, J. I., Park, H. J., and Kim, Y. K., "Development of Tactile Sensor and Its Application," JOURNAL-KOREAN SOCIETY OF PRECISION ENGINEERING, Vol. 21, No. 9, pp. 20-25, 2004.
- Kim, M. S., Park, Y. K., and Kwon, S. Y., "Tactile device That Mimics Human's Sensory system", Physics & High Technology, Vol. 19, pp. 15-22, 2010.
- Kim, J. Y., Baek, S. H., and Lee, J. J., "Development of fabric-based - 64 - optical fiber tactile sensor using optical fiber", Journal of Korean Sensors Society, Vol. 18, No. 3, pp. 210-216, 2009.
- Kim, J. H., Lee, J. I., Park, H. J., and Kim, Y. K., "Development of Tactile Sensor and Its Application," JOURNAL-KOREAN SOCIETY OF

PRECISION ENGINEERING, Vol. 21, No. 9, pp. 20-25, 2004.

- Pique, A., and Chrisey, D. B., "Direct write technologies for rapid prototyping application," Academic press, pp. 229-249, 2002.
- Choi, Y. S., "Development of Non-planar Flexible Tactile Sensor", A Thesis for a Master Degree, Chungbuk National University, Republic of Korea, 2016.
- Woo, S. G., "Fabrication of Large Area Flexible Tactile Sensor based on the Additive Manufacturing", A Thesis for a Master Degree, Chungbuk National University, Republic of Korea, 2015.
- Liu, C.-X., and Choi, J. W., "Improved Dispersion of Carbon Nanotubes in Polymers at HighConcentrations", Nanomaterials, Vol. 2, pp. 329-347, 2012.
- 11. Woo, S. G., Lee, I. H., and Lee, K. C., "Hybrid fabrication process of additive manufacturing and direct writing for a 4x4 mm matrix flexible tactile sensor", Journal of Mechanical Science and Technology, pp. 3905-3909, 2015.