DOI QR코드

DOI QR Code

Structural Safety Assessment of Piping Used in Offshore Plants According to Thermal Load and Motion

해양플랜트에 사용되는 배관의 열 하중과 구조물의 운동에 따른 구조안전성 평가

  • Ryu, Bo Rim (Department of Marine System Engineering, Graduate School, Korea Maritime & Ocean University) ;
  • Kang, Ho Keun (Division of Coast Guard Studies, Korea Maritime & Ocean University) ;
  • Duong, Phan Anh (Department of Marine System Engineering, Graduate School, Korea Maritime & Ocean University) ;
  • Lee, Jin Uk (Department of Marine System Engineering, Korea Maritime & Ocean University)
  • 류보림 (한국해양대학교 대학원) ;
  • 강호근 (한국해양대학교 해양경찰학부) ;
  • ;
  • 이진욱 (한국해양대학교 기관시스템공학부)
  • Received : 2021.06.30
  • Accepted : 2021.08.24
  • Published : 2021.08.31

Abstract

The objective of this study was to evaluate structural safety according to environmental conditions acting on the piping of offshore structure and the motion of the structure. As for conditions acting on the piping, the maximum and minimum temperature conditions were used to analyze the design conditions of N2 generator. The motion of the structure was calculated and applied according to the DNV(Det Norske Veritas) rule. Each condition was combined and a total of 26 load combinations were constructed according to thermal load, motion load, and presence or absence of pipe support. Analysis was performed using a commercial program MSC Patran/Nastran. Thermal analysis was performed by applying the steady-state method, Sol 153. Thermal-structural coupled analysis was performed using Sol 101, a linear-static method. As a result of the analysis, the stress tended to increase when temperature inside the pipe was lower in Set 1 and Set 2, when temperature was higher in Set 3, and when the temperature difference between the inside and outside of the pipe in Set 4 was increased. However, the sum of stresses in the condition with only temperature load and the condition with only the kinetic load did not show the same value as the stress in the composite load condition of two loads. That is, the influence of the motion load varied depending on the direction of motion, the arrangement of pipes, and the position of the support. Therefore, it is necessary to comprehensively consider the size and direction of the motion load acting on the piping, the arrangement of the piping, and the location of the pipe supports during the design of piping.

본 논문에서는 해양구조물의 배관에 작용하는 환경조건과 구조물의 움직임에 따른 구조안전성 평가를 수행하였다. 배관에 작용하는 조건은 N2 generator의 설계 조건을 분석하여 최고온도와 최저온도 조건을 적용하였다. 구조물의 움직임은 DNV 규칙에 따라 계산하여 적용하였다. 각각의 조건을 조합하고 열 하중, 운동 하중 그리고 배관지지대의 유무에 따라 총 26가지 하중 조합을 구성하였고 상용프로그램인 MSC Patran/Nastran을 이용하여 해석을 진행하였다. 열해석은 Steady-state 방법인 Sol 153, 열-구조 연성 해석은 Linear-static 방법인 Sol 101을 각각 적용하여 수행하였다. 해석 결과, Set 1과 Set 2에서는 배관 내의 온도가 낮을수록, Set 3에서는 온도가 높을수록, Set 4에서는 배관 내외부의 온도 차가 클수록 응력이 증가하는 경향이 있었다. 하지만, 온도 하중만 있는 조건과 운동 하중만 있는 조건에서의 응력의 합이 두 하중의 복합 하중 조건에서의 응력과 같은 값을 나타내지는 않았다. 즉, 운동 하중에 의한 영향은 운동의 방향, 배관의 배치나 지지대의 위치 등에 따라 달라진다는 것을 알 수 있다. 따라서, 설계 시점에서 배관에 작용하는 운동 하중의 크기와 방향, 배관의 배치 그리고 배관 지지대의 위치 등을 종합적으로 고려할 필요가 있다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 산업기술혁신사업 사업[Topside Module(500ton 이상) 제작 상용화를 위한 생산공법·기술 및 핵심장비 패키지개발]의 지원을 받아 수행한 연구임.(No. : 10085629, 2017) 본 논문은 부산광역시 및 (재)부산인재평생교육진흥원의 BB21플러스 사업으로 지원된 연구임.

References

  1. Byun, S. W.(2006), Thermo-Structural Analysis of Combustion Chamber and Nozzle Part of the Ramjet Engine, Chungnam National University, Department of Mechanical Design Engineering, Master Dissertation.
  2. DNV(2016), Part 3 Chapter 1 Hull Structural Design - Ships with Length 100 Metres and Above.
  3. El-Reedy, M. A.(2012), Offshore Structures: Design, Construction and Maintenance, 1st ed., Gulf Professional Publishing: Huston.
  4. Holman, J. P.(2002), Heat Transfer, 9th ed., New York : McGraw-Hill.
  5. Lee, K. H., Kim, H. K., Yang, Y. S. and Song, K. W.(2007), "Thermo-Structural Analysis of the Dual-Cooled Fuel Pellet", Conference of The Korean Society of Mechanical Engineers, pp. 11-16.
  6. Logan, D. L.(2007), A first course in the finite element method, 4th ed. Toronto : Thomson.
  7. Noda, N., Hetnarski, R. B. and Tanigawa, Y.(2003), Thermal Stresses, 2nd ed., New York : Taylor & Francis.
  8. Park, S. K.(2006), "The offshore plant is piping. How to improve piping design capability", The Society of Naval Architects of Korea, Vol. 43, No. 1, pp. 36-48.
  9. Ryu, B. R.(2021), "The Structural Safety Evaluation of Equipment and Pipes According to the Motion and Environmental Conditions of Ships and Offshore Plants", Korea Maritime & Ocean University, Department of Marine Systems Engineering, Master Dissertation.
  10. Sohail, M., Venukumar, S. and Reddy, M. V.(2017), "An outline of piping design using CAESER II - Case Study", Materialstoday: Proceedings, Vol. 4, Issue 8, pp. 8269-8278.
  11. Son, S. H., Kim, K, S. and Jeon, E. C.(2016), Offshore Oil & Gas Plant, 2nd ed.. CIR: Seoul.
  12. Ugural, A. C.(1999), Stresses in plates and shells, 2nd ed. New York : McGraw-Hil.
  13. You, J. C., Ye, S. H., Park, J. H. and Kong, Y. M.(2016), "Vibration analysis of Offshore Plant pipe line using a FSI(fluid structure interaction)", Proceedings of Korean Society for Noise and Vibration Engineering.