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THE LINE ELEMENT APPROACH FOR THE GEOMETRY

OF POINCARÉ DISK

Jong Ryul Kim

Abstract. The geometry of Poincaré disk itself is interpreted without
any mapping to different spaces. Our approach might be one of the

shortest and is intended for educational contribution.

1. Introduction

For vectors vp = (v1, v2) and wp = (w1, w2) in 2-dimensional Euclidean

space R2, the norm of a vector |vp| =
√
vp · vp =

√
v21 + v22 which is the

Pythagorean theorem is defined by the dot product

vp · wp = v1w1 + v2w2

and the angle θ formed by two vector v, w ∈ R2 is given by cos θ = v·w
|v||w| . The

arc length of a differentiable curve α(t) in R2 from α(0) to α(1) is given by∫ 1

0

|α′(t)| dt =
∫ 1

0

√
α′(t) · α′(t) dt

and the arc length of a piecewise differentiable curve is the sum of the arc
length of differentiable parts. The distance from α(0) to α(1) is defined by the
shortest arc length among all curves. We can easily show that the straight line
from α(0) to α(1) is the shortest arc length when the dot product is given on
R2. Thus by considering an inner product g(v, w) on a vector space V ⊂ R2

and defining the arc length of a curve α(t) by∫ 1

0

|α′(t)| dt =
∫ 1

0

√
g(α′(t), α′(t)) dt,

we can have a distance different from Euclidean geometry. A geometry where
four Euclidean postulates except for the Parallel one hold is known as absolute
geometry ([7]). A non-Euclidean geometry with an inner product g on the
Poincaré disk DP = {(x, y) ∈ R2 |x2 + y2 < 1} satisfying the following three
observations is going to be determined.
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• First, if g(vp, wp) = f(p)(vp ·wp), then the angle defined by an inner product
is equal to the angle defined by the dot product

cos θ =
g(vp, wp)√

g(vp, vp)
√
g(wp, wp)

=
f(p)(vp · wp)√

f(p)(vp · vp)
√
f(p)(wp · wp)

=
vp · wp

|vp||wp|
= cos θ .

• Second, the geometry of the Poincaré disk DP is assumed to be rotationally
symmetric, that is, the geometry of a neighborhood at p is isometric to that of
a neighborhood at any point q related to p by rotation of any angle. It means
that a function f(r, θ) = f(x, y) in g(vp, wp) = f(p)(vp ·wp) depends only on r
for the polar coordinates p = (x, y) = (r cos θ, r sin θ) ∈ DP .

• Third, the Euclidean norm of a vector vp = (v1, v2) at p = (p1, p2) ∈ DP with
(p1 + v1, p2 + v2) ∈ DP must be scaled to infinity as p goes to the boundary of
DP , since the boundary is considered to be a circle of radius ∞.

Under these three assumptions, one of the simplest candidates for an inner
product g on the Poincaré disk DP could be

g(vp, wp) =
2(vp · wp)

1− (x2 + y2)

for all points p = (x, y) ∈ DP and scaling constant 2. The line element ds2 of
the Poincaré disk is

ds2 =
4(dx2 + dy2)

(1− (x2 + y2))2
.

Let α(t) = (x(t), y(t)) be a differentiable curve from α(0) to α(1) in DP .
The arc length of α(t) from α(0) to α(1) is∫ 1

0

√
g(α′(t), α′(t)) dt =

∫ 1

0

2|α′(t)|
1− |α(t)|2

dt,

where |α′(t)| =
√
α′(t) · α′(t) and |α(t)|2 = x(t)2+y(t)2. The distance d(α(0), α(1))

is the shortest arc length among all curve from α(0) to α(1)

d(α(0), α(1)) = infα

∫ 1

0

2|α′(t)|
1− |α(t)|2

dt .

We are going to find a shortest path between any two points in the Poincaré
disk by using a distance-preserving biholomorphic mapping on the Poincaré
disk or a linear fractional transformation which preserves the cross ratio and
the distance. We also show that the Poincaré Disk is isometric to one connected
component of two-sheeted hyperboloid −x2 + y2 + z2 = −1 in 3-dimensional
Minkowski space-time and the sum of the interior angles of a triangle, a Saccheri
quadrilateral on the Poincaré disk is less than π, 2π, respectively.
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There are plenty lecture notes, papers([1],[6], [8]) and books ([2] [4],[5],
[7]) on the hyperbolic geometry. The picture of the hyperbolic geometry is
well-known. Here we suggest intuitive and direct approaches for the effective
understanding of the hyperbolic geometry. In the last section, we can find the
shortest arc length in the Poincaré disk numerically by using Python language.

2. A distance-preserving biholomorphic mapping on the Poincaré
disk

A function f : DP −→ DP ⊂ C is said to be holomorphic if f(x, y) =
u(x, y) + iv(x, y) satisfies the Cauchy Riemann equations

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
.

A biholomorphic function is a holomorphic function f which is bijective and
whose inverse f−1 is also holomorphic. Let α(t) = x(t)+iy(t) be a differentiable
curve from α(0) = z1 to α(1) = z2 in DP . For f(z1) = (f ◦ α)(0) and f(z2) =
(f ◦ α)(1), the distance d(f(z1), f(z2)) is

d(f(z1), f(z2)) = inff(α)

∫ 1

0

2|(f ◦ α)′(t)|
1− |(f ◦ α)(t)|2

dt .

We show that if f is a holomorphic function on DP , then d(f(z1), f(z2)) ≤
d(z1, z2).

Schwarz lemma For a holomorphic function f : DP −→ C such that f(0) = 0
and f(z) ≤ 1 on DP , it satisfies that

∣∣f(z)∣∣ ≤ |z| for all z ∈ DP and
∣∣f ′(0)

∣∣ ≤ 1.

Schwarz-Pick theorem For a holomorphic function f : DP −→ DP , it holds
that

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.

Proof. Define g, h : DP −→ DP

g(z) =
z1 − z

1− z1z
, h(z) =

f(z1)− z

1− f(z1)z
z1 ∈ DP .

Since g−1(0) = z1, we have h
(
f(g−1(0))

)
= 0. Using the Schwarz lemma, we

get ∣∣∣h(f(g−1(z))
)∣∣∣ ≤ |z|.
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Hence
∣∣∣h(f(z))∣∣∣ = ∣∣∣h(f(g−1(g(z)))

)∣∣∣ ≤ |g(z)| and so∣∣∣ f(z1)− f(z)

1− f(z1)f(z)

∣∣∣ ≤ ∣∣∣ z1 − z

1− z1z

∣∣∣
lim
z1→z

∣∣∣ f(z1)−f(z)
z1−z

1− f(z1)f(z)

∣∣∣ ≤ lim
z1→z

∣∣∣ 1

1− z1z

∣∣∣ .
So we have

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.

For z1 = α(0), z2 = α(1) and f(z1) = (f ◦ α)(0), f(z2) = (f ◦ α)(1), we get

inff(α)

∫ 1

0

2|f ′(α(t))||α′(t)|
1− |f(α(t))|2

dt ≤ infα

∫ 1

0

2|α′(t)|
1− |α(t)|2

dt = d(z1, z2)

by Schwarz-Pick Theorem. So we get ([6])

d(f(z1), f(z2)) ≤ d(z1, z2).(1)

If f−1 is a holomorphic function on DP , then we have

d(z1, z2) = d(f−1(f(z1)), f
−1(f(z2))) ≤ d(f(z1), f(z2))

by applying the above (1). Hence we obtain

d(f(z1), f(z2)) = d(z1, z2)(2)

for a biholomorphic function f on DP .

3. A shortest path between any two points in the Poincaré disk

(Case 1) We show that a straight line connecting the origin and an arbitrary
point p ∈ DP is a shortest path. Let α(t) = (x(t), y(t)) = (r(t) cos θ(t), r(t) sin θ(t))
be a differentiable curve from α(0) = (0, 0) to α(1) = (x(1), y(1)) = p for the
polar coordinates. Calculations show that

α′(t) = (r′(t) cos θ(t)− r(t) sin θ(t)θ′(t), r′(t) sin θ(t) + r(t) cos θ(t)θ′(t))∫ 1

0

√
g(α′(t), α′(t)) dt =

∫ 1

0

2
√
(r′(t))2 + (r(t))2(θ′(t))2

1− r(t)2
dt

≥
∫ 1

0

2
√
(r′(t))2

1− r(t)2
dt

=

∫ 1

0

2|r′(t)|
1− r(t)2

dt.

It means that the length of an arbitrary curve connecting the origin and an
arbitrary point p ∈ DP is greater than equal to the length of a straight line
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which is the case of a constant θ0 = θ(t) connecting the origin and an arbitrary
point p ∈ DP . Fix two constants cos θ(t) = a and sin θ(t) = b. Let α(t) =

(at, bt) be a straight line from α(0) = (0, 0) to α(1) = (a, b) for c =
√
a2 + b2 <

1. Then we have∫ 1

0

√
g(α′(t), α′(t)) dt =

∫ 1

0

2
√
a2 + b2

1− (a2 + b2)t2
dt

=

∫ 1

0

2c

1− c2t2
dt

=

∫ 1

0

c

1 + ct
− −c

1− ct
dt

= ln
1 + c

1− c
.(3)

Also let α(t) = (0, ct) be a straight line from α(0) = (0, 0) to α(1) = (0, c) for
c < 1. Then we have∫ 1

0

√
g(α′(t), α′(t)) dt =

∫ 1

0

2c

1− c2t2
dt

=

∫ 1

0

c

1 + ct
− −c

1− ct
dt

= ln
1 + c

1− c
.

A function f : C −→ C of the form

f(z) =
az + b

cz + d
(ad− bc ̸= 0)

is called a linear fractional transformation. Note that a Möbius transformation

f(z) =
z + a

āz + 1

for |a|2 = aā < 1 and a ∈ C is a linear fractional transformation which is a
bijective mapping on DP , since

|z + a|2 − |āz + 1|2 = −(1− |a|2)(1− |z|2) < 0

and f(0) = a. It is clear that

f(z) =
z + a

āz + 1
=

1

ā
+

a− 1
ā

āz + 1

is biholomorphic, since f(z) = az+ b for a, b ∈ C and f(z) = 1
z are holomorhic.

Let C be a circle with center z0 = (x0, y0) and radius r on the complex
plane C, that is,

(z − z0)(z − z0) = r2

zz̄ − z0z − z0z̄ + z0z0 − r2 = 0.(4)
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Figure 1. A shortest path through a point (a, 0) on the
Poincaré disk

(Case 2) We show that a part of C in DP which meets orthogonally at two
points of the boundary of the Poincaré disk is a shortest path. Rewrite (4) as

zz̄ + δz + δ̄z̄ + γ = 0 for δ = −z0 and |z0|2 − r2 = γ .(5)

Let L be a line through the origin on the complex plane C

L = {(x, y) | cx+ dy = 0}.(6)

Rewrite (6) as

βz + β̄z̄ = 0 for β =
c− id

2
and z = x+ iy .(7)

We find the image of y−axis (that is, β̄ = β by (7)) inDP by a biholomorphic
function

f(z) =
z + a

az + 1
for a real a ∈ DP .

Recall that d (f(z1), f(z2)) = d (z1, z2) (2). β̄ = β implies d = 0. So we get
x = 0. Put w = z+a

az+1 . Then we get z = w−a
−aw+1 . From the equation (7)

β
w − a

−aw + 1
+ β

( w − a

−aw + 1

)
= 0,
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Figure 2. A rotation on the Poincaré disk
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Figure 3. Two parallels to y-axis through a point A on the
Poincaré disk

we get a circle equation (5)

(−2aβ)ww̄ + (β + a2β)w + (β + a2β)w̄ + (−2aβ) = 0

ww̄ − 1

2

(
a+

1

a

)
w − 1

2

(
a+

1

a

)
w̄ + 1 = 0
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with

−δ = z0 = z0 =
1

2

(
a+

1

a

)
>

√
a
1

a
= 1(8)

and

|z0|2 − r2 = γ = 1.(9)

Two circles meet at two points with x = 1
z0
, since

x2 + y2 = 1, (x− z0)
2 + y2 = r2

1− x2 = r2 − (x− z0)
2 = r2 − x2 + 2z0x− z20 = −1− x2 + 2z0x

or

x2 + y2 = 1, (x− z0)
2 + y2 = z20 − 1

1− x2 = z20 − 1− (x− z0)
2, 2 = 2z0x.

As a goes to 0, 1
z0

goes to 0 by (8). The equations (8) and (9) imply that the

center and radius of a circle depending on a are on the hyperbola |z0|2−r2 = 1.
As a goes to 1, 1

z0
goes to 1 and the norm of radius of a circle goes to zero by

|z0|2 − r2 = 1.
Two circles meet orthogonally at two points by the following two facts. The

equation |z0|2 = r2 +1 implies that the triangle consisting of three points (the
origin, z0 and one of the two meeting points) is a right triangle. Note that the
position vector from the origin to a point p of the boundary of the Poincaré
disk is always orthogonal to the tangent vector at a point p (Fig. 1).

Finally, a rotation f(z) = eiθz on DP is also holomorphic, it preserves the
distance by (2) (Fig. 2).

4. The cross ratio and the distance between two points on the
Poincaré disk

Let α(t) = (t, 0) ⊂ DP be a differentiable curve from α(0) = (0, 0) to α(x).
The shortest arc length of α(t) from α(0) to α(x) is∫ x

0

√
g(α′(t), α′(t)) dt =

∫ x

0

2

1− t2
dt

=

∫ x

0

1

1 + t
− −1

1− t
dt

= ln
1 + x

1− x
.(10)

The cross ratio [z0, z1, w1, w0] for four points z0, z1, w1, w0 ∈ C is defined by

[z0, z1, w1, w0] =
(z0 − w1)(z1 − w0)

(z1 − w1)(z0 − w0)
.
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Put

T (z) = [z, z1, w1, w0] =
(z − w1)(z1 − w0)

(z1 − w1)(z − w0)
.

Then we see

T (z1) = 1, T (w1) = 0, T (w0) = ∞.

For a real number 0 < x < 1, we have

T (x) = [x, 0, 1,−1] =
(x− 1)(0− (−1))

(0− 1)(x+ 1)
=

1− x

1 + x
(11)

T (0) = 1, T (1) = 0, T (−1) = ∞.(12)

From (10), (11) and (12), we can define the distance from x to the origin O of
DP by

d(x,O) =
∣∣∣ ln 1− x

1 + x

∣∣∣.
For 0 < iy < i, we have

T (iy) = [iy, 0, i,−i] =
(iy − i)(0− (−i))

(0− i)(iy + i)
=

1− y

1 + y

So we get

d(iy, O) =
∣∣∣ ln 1− y

1 + y

∣∣∣.
We find the image of y−axis by a linear fractional transformation

f(z) =
z + a

az + 1

for a real a with |a| < 1. We get the same results as in section 3. A linear
fractional transformation f preserves the cross ratio

[f(z0), f(z1), f(w1), f(w0)] = [z0, z1, w1, w0].

So we can define the distance by

d(z1, z2) = d(f(z1), f(z2)) =
∣∣∣ ln[z1, z2, w1, w0]

∣∣∣,
where w1, w0 ∈ ∂D. It is easy to check that

d(z1, z2) = d(z2, z1), d(z1, z2) + d(z2, z3) ≥ d(z1, z3)

d(z1, z2) ≥ 0 and d(z1, z2) = 0 if and only if z1 = z2

for all z1, z2, z3 ∈ DP .

Remark. Let us denote by H the Poincaré upper half plane. Take a bijective
mapping h : H → DP

h(z) =
z − i

iz − 1
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with the inverse g(w) = i−w
1−iw . Then we have g′(w) = −2

(1−iw)2 and the imaginary

part of g(w) is

Im(g(w)) =
1− |w|2

|1− iw|2
.

Since |w2|2 = www̄w̄ = ww̄ww̄ = |w|4, we have |w2| = |w|2. So we obtain the
following relation∫ 1

0

2|α′(t)|
1− |α(t)|2

dt =

∫ 1

0

| −2
(1−iα(t))2 ||α

′(t)|
1−|α(t)|2
|1−iα(t)|2

dt =

∫ 1

0

|(g ◦ α)′(t)|
Im(g(α(t)))

dt.

Therefore we can define an inner product on H as

g(vp, wp) =
1

y
(vp · wp)

for all p ∈ H.

5. The line element of a surface

Let S be a regular surface in 3-dimensional Euclidean space R3. The first
fundamental form

Ip : TpS × TpS −→ R, Ip(v, w) = v · w
is the inner product on the tangent space TpS at p ∈ S of a surface S induced
by the dot product of R3. Let X : U ⊆ R2 −→ S ⊂ R3 be a coordinate chart
of a surface S, that is,

X(u, v) = (x(u, v), y(u, v), z(u, v)).

Let α : [t0, t1] = I −→ S ⊂ R3 be a curve in S such that

α(t) = X(u(t), v(t))

for a curve c(t) = (u(t), v(t)) ⊂ U ⊆ R2. The length of a curve from α(t0) to
α(t) is

s(t) =

∫ t

t0

|α′(r)| dr =

∫ t

t0

√
Iα(r)

(
α′(r), α′(r)

)
dr.

Since α′(r) = Xu
du
dr +Xv

dv
dr and

Iα(r)
(
α′(r), α′(r)

)
= Iα(r)

(
Xu

du

dr
+Xv

dv

dr
, Xu

du

dr
+Xv

dv

dr

)
=

(
Xu ·Xu

)(du
dr

)2

+ 2
(
Xu ·Xv

)(du
dr

)(dv
dr

)
+

(
Xv ·Xv

)(dv
dr

)2

= E
(du
dr

)2

+ 2F
(du
dr

)(dv
dr

)
+G

(dv
dr

)2

,

where we put E = Xu ·Xu, F = Xu ·Xv and G = Xv ·Xv, we get

ds

dt
=

√
E
(du
dt

)2

+ 2F
(du
dt

)(dv
dt

)
+G

(dv
dt

)2

.
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Therefore we have the so-called line element

ds2 = Edu2 + 2Fdudv +Gdv2.

Note that the line element ds2 of 2-dimensional Euclidean space R2 with the
dot product is

ds2 = dx2 + dy2.

For a vector v = (v1, v2) ∈ R2, the notations

ds2(v) = |v|2, dx2(v) = dx(v)dx(v) = v1v1 = v21 , dy2(v) = dy(v)dy(v) = v2v2 = v22

imply the Pythagorean Theorem. Using the polar coordinates, we get

ds2 = dx2 + dy2 = dr2 + r2dθ ,

since (x, y) = (r cos θ, r sin θ) and

(dx, dy) = (dr cos θ − r sin θdθ, dr sin θ + r cos θdθ).

The line element ds2 of the Poincaré upper half plane, the Poincaré disk is

ds2 =
dx2 + dy2

y2
, ds2 =

4(dx2 + dy2)

(1− (x2 + y2))2
,

respectively. Let us find the line element ds2 of the Poincaré disk with respect
to the polar coordinates. By (3) and (10), we can put for 0 ≤ r < 1

r̄ = ln
1 + r

1− r
.

Then we have

sinh r̄ =
er̄ − e−r̄

2
=

1+r
1−r − 1−r

1+r

2
=

2r

1− r2
.

ds2 =
4(dx2 + dy2)

(1− r2)2
=

4(dr2 + r2dθ2)

(1− r2)2
=

( 2

1− r2

)2

dr2 +
( 2r

1− r2

)2

dθ2

It follows from r̄(r) = ln 1+r
1−r that

dr̄ =
2

1− r2
dr.

So we get

ds2 = dr̄2 +
( 2r

1− r2

)2

dθ2 = dr̄2 + sinh2 r̄dθ2.

A rotation f(z) = eiθz on DP preserves the isometry. Rewrite it on DP

ds2 = dr2 + sinh2 rdθ2.

So

E = 1, F = 0, G = sinh2 r.

Then we get Gaussian curvature K = −1, where

K =
−1

2
√
EG

( ∂

∂θ

( ∂E
∂θ√
EG

)
+

∂

∂r

( ∂G
∂r√
EG

))
.
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𝑦

𝑧

𝑥 x = z
x = -z

Figure 4. One connected component of the two-sheeted hyperboloid

By the Gauss-Bonnet theorem, the sum of the interior angles of a triangle
on DP is less than π. A quadrilateral □ABCD which has two right angles
∠DAB ∼= ∠CBA and two congruent sides AD ∼= BC without assuming the
Parallel postulate is called a Saccheri quadrilateral. AB is called the base of the
quadrilateral. Consider a Saccheri quadrilateral □Y OXP with the base OX
on the Poincaré disk DP , where X, Y is a point in x-axis, y-axis, respectively.
Since we have two triangles △Y OX and △XY P , the sum of the interior angles
of a Saccheri quadrilateral on the Poincaré disk is less than 2π.

5.1. The line element of a surface of revolution

Let R3
1 be Minkowski space-time with metric

g(v, w) = −v1w1 + v2w2 + v3w3.

Consider the surface of revolution of a curve α(r) = (cosh r, 0, sinh r) of the
hyperbola x2 − z2 = 1 in the xz-plane with a coordinate chart

X(r, θ) = (cosh r, sinh r cos θ, sinh r sin θ) ⊂ R3
1,

which satisfies −x2 + y2 + z2 = −1 (Fig. 4). So we have

Xr = (sinh r, cosh r cos θ, cosh r sin θ), Xθ = (0,− sinh r sin θ, sinh r cos θ)

E = g(Xr,Xr) = − sinh2 r + cosh2 r = 1

F = g(Xr,Xθ) = 0, G = g(Xθ,Xθ) = sinh2 r.

Hence we get

ds2 = dr2 + sinh2 rdθ2.
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So the Poincaré disk is isometric to the above surface of revolution of a curve
α(r) = (cosh r, 0, sinh r) of the hyperbola x2 − z2 = 1 in the xz-plane in
Minkowski space-time R3

1.

6. Numerical calculations of the length of of a curve in the Poincaré
disk

In this section, Example 2,3 (Figure 5,6) show numerically that the shortest
path connecting P and Q in DP is the part of C1 which meets orthogonally
at the two boundary points of DP compared with a bigger or smaller circle C2

which does not meet orthogonally at the two boundary points of DP . Example
1 indicates that the length of the straight line connecting P and Q independent
of θ(Figure 5) is not the shortest.

Note that the Riemannian integral
∫ b

a
f dx is given by the limit of the Rie-

mannian sum. Let P be a partition of an integration interval I = [a, b] denoted
by

P : a = x0 < x1 < x2 < · · · < xk−1 < xk < · · · < xn = b

for k ∈ {1, 2, 3, . . . , n} and f be the integrand. First, we give Python code
of numerical integration which is the sum of the areas of trapezoids consist-
ing of four points xk−1, xk, f(xk−1), f(xk) as a approximation value when the
maximum xk − xk−1 for all k is small enough. The area of the k-th trapezoid
is

1

2

((
f
(
a+ (k − 1)

b− a

n

))
+

(
f
(
a+ k

b− a

n

)))(b− a

n

)
where xk −xk−1 = b−a

n for all k and a sufficiently large positive integer n ([3]).

import math

from math import *

import numpy as np

def integraltrapezoid(f,a,b):
sum=0
n=10000
for k in range(1, 10000+1):
sum =sum+((1/2)*(f( a+(k-1)*((b-a)/n))+f( a+k*((b-a)/n))))*((b-a)/n)

return sum

Second, we give Python code of numerical differentiation.

def diff(f,x):
h=1e-5
d=(f(x+h)-f(x-h))/(2*h)
return d
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Third, we can calculate the Euclidean length of a curve α(t) = (−2+
√
3 cos(t),

√
3 sin(t))

by using Python lambda function.

f=lambda x:-2+((3)**(1/2))*np.cos(x)

g=lambda x:((3)**(1/2))*np.sin(x)

def length(f,g,a,b):
fg=lambda x:(diff(f,x)**2 +diff(g,x)**2)**(1/2)
return integraltrapezoid(fg,a,b)

length(f,g,-pi/12,pi/12)

0.9068996821024429 which is a approximation value of∫ b

a

√
α′(t) · α′(t) dt =

∫ b

a

√
3 dt =

√
3(b− a)

((3)**(1/2))*(pi/12-(-pi/12))

0.9068996821171088

Consider a geodesic α(t) = (−2+
√
3 cos(t),

√
3 sin(t)) for −π/12 ≤ t ≤ π/12

which is the part of circle (x+2)2+y2 = 3 in the Poincaré disk. Let us calculate
the length of α(t) ∫ b

a

2
√
α′(t) · α′(t)

1− (α1(t)2 + α2(t)2)
dt

by using the inner product g(vp, wp) =
2(vp·wp)

1−(x2+y2) .

def lengthpoincare(f,g,a,b):
fg=lambda x:2*(1/(1-(f(x)**2+g(x)**2)))*(diff(f,x)**2 +diff(g,x)**2)**(1/2)
return integraltrapezoid(fg,a,b)

f=lambda x:-2+((3)**(1/2))*np.cos(x)

g=lambda x:((3)**(1/2))*np.sin(x)

lengthpoincare(f,g,-pi/12,pi/12)

2.151268379413075

Let us compare the length of a curve (a line segment in the sense of Euclidean
geometry)

α(t) =
(
− 2 +

√
3 cos(− π

12
), t

)
, sin(− π

12
) ≤ t ≤ sin(

π

12
)

in the Poincaré disk with the above one.

f=lambda x:-2+((3)**(1/2))*np.cos(-pi/12)

g=lambda x:x

lengthpoincare(f,g,((3)**(1/2))*np.sin(-pi/12),((3)**(1/2))*np.sin(pi/12))
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2.182699643561364 which is greater than the above length.

Example 1 Consider a geodesic α(t) = (−10 +
√
99 cos(t),

√
99 sin(t)) for

−π/10000 ≤ t ≤ π/10000 which is the part of circle (x + 10)2 + y2 = 99
in the Poincaré disk.

f=lambda x:-10+((99)**(1/2))*np.cos(x)

g=lambda x:((99)**(1/2))*np.sin(x)

lengthpoincare(f,g,-pi/10000,pi/10000)

0.012534916887604922

Let us compare the length of a curve (a line segment in the sense of Euclidean
geometry)

α(t) =
(
− 10 +

√
99 cos(− π

10000
), t

)
, sin(− π

10000
) ≤ t ≤ sin(

π

10000
)

in the Poincaré disk with the above one.

f=lambda x:-10+((99)**(1/2))*np.cos(-pi/10000)

g=lambda x:x

lengthpoincare(f,g,((99)**(1/2))*np.sin(-pi/10000),((99)**(1/2))*np.sin(pi/10000))

0.012534917094007081 which is greater than the above length.

Example 2 Let us denote by C1 the circle whose part in the poincaré disk is
the shortest path connecting P and Q. Let us denote by C2 the circle passing
through two points P and Q whose radius is greater than that of C1. Let O1,
O2 be the origin of the circle C1, C2, respectively. We see that the length of the
line segment O1P is

√
3 with O1 = (−2, 0). We can calculate the radius c of

C2 with O2 = (−4, 0) and ∠PO1R = π/12 by using the Pythagorean Theorem
of △PO2R

r = c2 = (−2− (−4) +
√
3 cos(π/12))2 + (

√
3 sin(π/12))2.

Let us denote by θ the angel ∠PO2R = ∠QO2R. From
√
r sin θ =

√
3 sin(π/12),

it follows that

θ = arcsin(
√

3/r sin(π/12)).

We can see that arc length connecting P and Q of C2 becomes more greater
than arc length connecting P and Q of C1 as the radius of C2 increases by the
following Python calculations.

def makecircle(c):
r= ((3**(1/2))*np.cos(pi/12)-(c-(-2)))**2 + ((3**(1/2))*np.sin(pi/12))**2
return [c,r]
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Figure 5. Example 2

radius,lengthpoincarePQ=[],[]

for k in range(0,4):
c=makecircle(-(2)-k*0.1)[0]
r=makecircle(-(2)-k*0.1)[1]
d=-2+(3**(1/2))*np.cos(pi/12)
e=(3**(1/2))*np.sin(pi/12)
if (d-(c))**2+e**2==r:
radius.append(r**(1/2))

f=lambda x:c+((r)**(1/2))*np.cos(x)
g=lambda x:((r)**(1/2))*np.sin(x)
a=np.arcsin(((3/r)**(1/2))*np.sin(-pi/12))
b=np.arcsin(((3/r)**(1/2))*np.sin(pi/12))
h=lengthpoincare(f,g,a,b)
lengthpoincarePQ.append(h)

radius

[1.7320508075688772, 1.8288265422109127, 1.92593173373052, 2.0233189477898357]

lengthpoincarePQ

[2.151268379413075, 2.1513591858797745, 2.1515959867425436, 2.151936496223713]
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Figure 6. Example 3

Example 3 Let us denote by C2 the circle passing through two points P and Q
whose radius is less than that of C1 so that the origin of C2 is on the right side
of the origin of C1 in the picture of Example 2. We can also see that arc length
connecting P and Q of C2 becomes more greater than arc length connecting P
and Q of C1 as the radius of C2 decreases by the following Python calculations.

radius,lengthpoincarePQ=[],[]

for k in range(0,4):
c=makecircle(-(2)+k*0.1)[0]
r=makecircle(-(2)+k*0.1)[1]
d=-2+(3**(1/2))*np.cos(pi/12)
e=(3**(1/2))*np.sin(pi/12)
if (d-(c))**2+e**2==r:
radius.append(r**(1/2))

f=lambda x:c+((r)**(1/2))*np.cos(x)
g=lambda x:((r)**(1/2))*np.sin(x)
a=np.arcsin(((3/r)**(1/2))*np.sin(-pi/12))
b=np.arcsin(((3/r)**(1/2))*np.sin(pi/12))
h=lengthpoincare(f,g,a,b)
lengthpoincarePQ.append(h)
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radius

[1.7320508075688772, 1.6356630088453048, 1.5397360023750024, 1.444361601370872]

lengthpoincarePQ

[2.151268379413075, 2.1513819028313836, 2.1517810421417263, 2.1525803914346207]

Indeed, the above two numerical calculations indicate that the arc length
connecting P and Q of C1 is the shortest.

f=lambda x:-2+((3)**(1/2))*np.cos(x)

g=lambda x:((3)**(1/2))*np.sin(x)

lengthpoincare(f,g,-pi/12,pi/12)

2.151268379413075
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