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COMPLETE LIFTS OF PROJECTABLE LINEAR
CONNECTION TO SEMI-TANGENT BUNDLE

MURAT POLAT* AND FURKAN YILDIRIM

Abstract. We study the complete lifts of projectable linear connection
for semi-tangent bundle. The aim of this study is to establish relations
between these and complete lift already known. In addition, the relations
between infinitesimal linear transformations and projectable linear con-
nections are studied. We also have a new example for good square in this
work.

1. Introduction

Let M, be a C°°—manifold of finite dimension n, and let (M, 71, B,,)
be a differentiable bundle over B,,. We use the notation (z') = (2%,1%),
where the indices 4, 7,... run over the range {1,2,...,n}, the indices a,b, ...
run over the range {1,2,...,n — m} and the indices «, 3, ... run over the range
{n—m+1,...,n}, 2% are coordinates in B,,, % are fiber coordinates of the
bundle

m M, = B,.

Let now (T'(Bp,), T, Bm) be a tangent bundle [16] over base space B,,, and
let M,, be differentiable bundle determined by a submersion (natural projec-
tion) m : M, — B,,. The semi-tangent bundle (pull-back) of the tangent
bundle (T'(B,,), 7, B,,) is the bundle (¢t(B,), w2, M,,) over differentiable bun-
dle M,, with a total space

t(Bm) = {((z%2%),2%) € My x Ty(By,) : 71 (2%, 2%) =7 (2%, 2%) = (%)}
C M, x Ty(Bum)

and with the projection map ms : t(B,,) — M, defined by ma(z%, 2%, 2%) =
(z*,x%), where Ty(Bp,) (x = m (Z),T = (z%,2*) € M,,) is the tangent space
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at a point x of B,,, where 2% = y© (a, B,...=n+1,.., 2n) are fiber coordi-
nates of the tangent bundle T'(B,,) (see, for pull-back bundle [4],[5],[10],[11],
[17],[18],[13],[14],[3])-

Where the semi-tangent bundle ¢(B,,) of the differentiable bundle M,, also
has the natural bundle structure over B,,, its bundle projection 7 : t(B,,) —
B,,, being defined by 7 : (2%, 2%, %) — (z*), and hence ™ = 1 o 3.

Thus (t(Bm),m1 o m2) is the step-like bundle [7] or composite bundle [[9],
p.9]. As a result, we notice the semi-tangent bundle (¢(By,),m2) is a pull-back
(Pontryagin [8]) bundle of the tangent bundle over B,, by m; [10].

If (') = (z%,2%") is another local adapted coordinates in M, then we
have

(1)

2 =2 (2, 27),
% =z (xﬁ) .

The Jacobian of (1) has the components

(47) = oo\ _ [ A7 A5
J Ozl 0 Aj
where A = % A9 = 2% A" = 2 [10].
To a transformation (1) of local coordinates of differentiable bundle M,,,

there corresponds on ¢(B,,) the change of coordinate

2 =2 (2, 2),

o e (),
2 = %";2 yP.

The Jacobian of (2) is:
) / Af A%/ 0
(3) A:(A§): o 4y o |,
0 Agy° Ag

where Ag; = %; I = (a,0,@), J = (b,3,0), I,J,... = 1,....2n [10].
Writing the inverse of (2) as

(@ o= (o),

we have
. A, Ag, 0
() (Ah)=1{ 0 43 0
0 Iél/glglyE A%/
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Now, consider a diagram as

T3

A — B
np e
C — D

T4
A good square of vector bundles satisfies the following conditions:
(a) 71 and 7o are fiber bundles, (but not necessarily vector bundles);
(b) 73 and 74 are vector bundles;
(¢c) T4 0 71 = T2 0 73, the square (diagram) is commutative;
(d) the local expression

A B B U'xR xM* xR — U'xM® (ai,a%¢"b") — (ai,¢")

ny I ! ) !

¢ — D U™ x R" 5 un (2, a%) - ()
T4

where superindices denote the dimension of the manifolds and M is a manifold

[2].

Hence we have

Theorem 1.1. Let now w : t(B,,) — B,, be a semi-tangent bundle and
w1 : M,, — B,, be a fiber bundle. So that

7o o _ 7o
t(Bm) — M, M, xTy,(Bn) — M, (z%z%2z% —= (z%z%)
id i \J/ﬂ'l id \L J(?Tl id \L \Lﬂ—l

t(Bm) — Bm M, xTy(Byn) — By (@%z%2% — (2%

™

is a good square and the diagram commutes (m = 71 o 7a).

We note that projectable linear connections in ¢(B,,) and their some prop-
erties were investigated in [[13], [14]]. In this paper, we continue to study the
complete lifts of projectable linear connection from differentiable manifold B,,
to semi-tangent (pull-back) bundle (¢(B,,), m2) initiated by V. V. Vishnevskii
[13].

We denote by (M) the module over F(M,) of all C>—tensor fields
of type (p,q) on M,, i.e., of contravariant degree p and covariant degree ¢,
where F(M,,) is the algebra of C°°—functions on M,,. We now put I(M,,) =
Z;?q:() P (M,,), which is the set of all tensor fields on M,,. Smilarly, we denote
by 3(B;,) and 3(B,,) respectively the corresponding sets of tensor fields in
the base space B,,.

2. Complete Lifts of Projectable Linear Connection

If f is a function on B,,, we write * f for the function on ¢(B,,) obtained
by forming the composition of 7 : ¢(B,,) — By, and *f = f o 71, so that

Wf="fomy=fomom=fom.



486 Murat Polat, Furkan Yildirim

Thus, the vertical lift ** f of the function f to ¢(B,,) satisfies
(6) v f(at 2%, a%) = fa®).

We note here that value ¥ f is constant along each fibre of 7 : ¢(B,,) — Byy,.
On the other hand, if f = f(z%, z®) is a function in M,,, we write“® f for the
function in ¢(B,,) defined by

(7) < f =(df) = 2”05 f =y 95 f

and call of the complete lift “°f of the function f [10].
Let X € 3}(Bm), i.e. X = X%9,. On putting

0
(8) vy (vaI) —_ 0 ,
X«

from (3), we prove that "? X’ = A(**X). "X is a vector field which is called
the vertical lift of X to t(By,).
For F € 31(B,,), we can define a vector field vF € I§(Bn):

0
(9) VE=(F)=1| 0
yore

From (3), we easily see that yF' = A(yF).

Let X € S§(M,) be a projectable vector field [13] with projection X =
X*(x%)0y 1e. X = X%z 2%)0, + X*(x¥)0s. The complete lift “°X of
X € 3§(M,,) to semi-tangent bundle t(B,,) has components [14]

o Xe
(10) ch _ (CCXI) — X(x
YO X
with respect to the coordinates (z%, 2%, z%) in t(B,,).

Theorem 2.1. Let X and Y be projectable vector fields on M,, with pro-
jections X and Y on B,,, respectively. For the Lie product, we have [19]:

X V] = [X,V](i.e.Lo. 5 (V) = (Lg?) ).
Theorem 2.2. Let X € SY(M,,). For the Lie product, we have
[*“X,yF] = 5 (LxF)

for any F € S}(B,), where Lx the operator of Lie derivation with respect to
X.
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Let p: Y — M be a fibred manifold. A classical connection V on Y is
called projectable (with respect to p) if there exists a (unique) classical linear
connection V on M such that V is p—related to V [[15], [1]]. If T((B,,) is the
tangent bundle of B,,, a linear connection V is a classical linear connection on
B, [6]. The last condition means that if X,V € S§(M,) and X,Y € S3(Bn)
are such that Tpo X = X op and TpoY = Y op then TpoV);f/ =(VyY)op.

Where T is given by
T(X,Y)=VxY —-VyX — [X,Y]

for any X,Y € S3(Byn).
From the above defination it follows that the V is a projectable (with respect
to p :=m : M, = B,,) linear connection on B,,. Then there exists a unique

projectable linear connection “°V in semi-tangent bundle ¢(B,,) ([13], [14])
which satisfies

(11) V.. 5(°Y) =% (VxY)

for any projectable vector fields X , Y € 3¢(M,,). This assertion may be verified
by a simple calculation using connection components. Let ng be components
of V with respect to local coordinates (z®) in B, and ccl"}’ K components
of ““V with respect to the induced coordinates (z%,z% %) in t(B,,). Let
X e 3¢ (M,,) and Y € 3%(M,,) be projectable vector fields with components
X7 and 17", respectively, with respect to the local coordinates (z%, z%) in M,,.

Then X and Y have, respectively, components

Xa ya
cex . X« ,°¢ Y - Yo
YO X ye.Y ™

ccj(v'IccVI (cc{/b)
with respect to the coordinates (z?, 2, 2®) in t(B,y). If | ccXTeew (ccyB)
ccj?]ccv[ (cci}ﬁ)
Xazayb B _
Xev Y8 are the components of equalization X!V (“Y’) =

X'V,Y7 with respect to the induced coordinates (z?, 27, 2%) on t(B,,), then
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we have by (11):
(12)

ccrgc _cc FZ’Y _cc F27 _cc Ff;c _cc F37 _cc F%c _cc F%’Y _cc F%7 — O7
cc]_'\b — Fb
a”y a”?
cc]_'\gc _cc 1‘\,2’7 _cc ]_'\g7 _cc Fgc _cc ng _cc Fgc _cc ng _cc ]_'\g7 =0,
rf-ra, T T
ccrgc _cc Fg’y _cc Faﬁ7 _cc Fgc _cc Fgc _cc ng — 0’
T T2,
ccrgw = ygaerg'yv
ccrgv = Fgﬂ/’

By (3), (5), (12), we can easily prove that
T k= A7 AL AR T] k + AT AL, *TF i,
Where I = (a7 a7a)7 J = (b7/87B)7 K = (C7 7’7)7 L = (d7 w?@)'
We can easily verify by means (3) and (5) that the '/ x defined by (12)
determine globally in ¢(B,,) a projectable linear connection. This projectable

linear connection is called the complete lift of the projectable linear connection
V to t(B,,) and denoted by ““V.

Theorem 2.3. If R and T are respectively the curvature and the torsion
tensors of V, then ““R and ““T are respectively the curvature and the torsion
tensors of “°V.

Proof. Using Theorem 2.1, we obtain the following formulas:
cerp (ccjicci}) _ cc (T (j(v"i;))
= (V¥ - VX - [X7])

_ ccvccg(cci‘}> _cc VCC?(CC)’Z) _ |:ccjz7cc i‘}:| 7

<R (ccjz,cc }7) ccé

e (R (5(17) Z)
— (VgV3Z = V4V Z - Vg 77)
ey _cog _cey _coy _coy _cel _cog ey

ce  Veey cey Veex [co X ec 7]

for any projectable vector fields X,Y,Z € 3§(M,,). Thus, Theorem 2.3 is
proved. O

We shall now obtain the components of ““R and ““T". The components Raa,g
of R and Tag of T are respectively given by

Ronl) =018, — 0,10, + 15,9, — T8,

[eY « ap:
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T, =15, -T5,.

Thus, the components EI K iof “R are given by

Ea’yﬁo = wafov
@awg = Rcwgv
Rawg = ya ERQ"/g7
Ros2 = Ra,0,
Roys = Ryl
Rz = Ras?,

all the others being zero, and the components T, 4. of «T are given by

T =10,
T.;=T.,
(13) Tol = Taf,
1.5 = y=0. 1.5,
T58 = T.5,

all the others being zero, Withﬁrespect to the induced coordinates in ¢(B,,).
Where I = (a,,@), J =(b,8,0), K = (¢,7,7), L = (d, ¢, 9).

3. Horizontal Lifts of vector fields

Firstly, we will give some preliminary definitions. For any F' € SH(Bn), if

we take account of (5), we can easily prove that (vF) = A(yF), where vF is
a vector field defined by

0
(14) VF=(@F)=10
yore
with respect to the coordinates (z%,z%, z%).
Let now X € 3§(M,,) be a projectable vector field on M,, with projection
X € 33(Byy,) [9]- Then we define the horizontal lift 7 X of X by

(15) HHX —cc X — 4(VX)
on t(M,). Where V is a projectable symmetric linear connection in a differ-
entiable manifold B,,. Then, remembering that X and v(VX) have, respec-
tively, local componenets
B B X B B 0
“X = (X1) = | xe A(VX) = (v ) = | 0
ysaEXa yevEXa
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with respect to the coordinates (z%, 2%, 2%) on t(B,,). Vo X being the covari-
ant derivative of X¢, i.e.,

(Vo X®) = 0,X° + XPT5,.

We find that the horizontal lift ## X of X € S} (M,,) to semi-tangent bundle
t(By,) has components

(16) AX = (HHxT) = [ X
with respect to the coordinates (z%, z%,2%) in t(B,,). Where

5=yTs
Theorem 3.1. Let X € S}(Bn). If f € SY(By,), then

(’L) ccvm’X(vvf) — 0,
(i) “NVoox(“f) =" (Vx f)-

Proof. (i) If f € SY(Bm) and X € 33(Byy,), then we obtain by (6) and (8),

CCV“’“X(””f) _ UUXICCVI ('zwf>
— ’U’UX(ICCva (U’Uf) _|_’U7J XOLCCV(X (’U’Uf) _"_’U’U XECCVE(’U’U‘](‘)
XOuf +7 X% 0pf +" X Oxf
0 0 0
= 0.
(i) If f € SY(Bym) and X € I{(Bn), then we have by (7) and (8),

Cux (Cf) = VUX(Cf) =" XIaI(CCf)
= VX0, (% f) 47 XD (“Cf) 47 XD f)
= ijg_‘i%(“f)+i)6(_“,3a(“f)+%)§33a(“f)
= X%0xyP0sf = X“680sf = X“0nf
= (X)) =""(Vx[).
O

Theorem 3.2. Let X be a projectable vector field on M,,. If f € S8(B,y),
then

(i) “Veg("f) =" (Vgf),
(i1) “V..g(f) = (Vgf)-
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Proof. (i) If f € SY(B,,) and X is a projectable vector field on M,, with
projection X € S¢(B,y,), then, by (6) and (10), we have

ccvcc)?(vvf) — ccjz (vvf) _cc )?Ial (vvf)
= cexeg, (vvf) e X, (m)f) fce XE%(UUJC)
= X" 0uf +X0uf +y 0, X" Oaf
~~— ~~—
0 0

= X0, =" (Xf) =" (Ved).

ccjz ((;Cf‘)

_ chIaI (Ccf)

— CCXaaa(CCf) +CC Xaaa (CCJL‘) _|_CC Xﬁaa(cc'f)

= X0a (y’0sf) + X“0a (y°0sf) + y° 05 X0z (y° 0o f)
= X0,y 0sf + X0 (y0sf) + y* 05X 0 (y7 0o f)

= yYP(X 00+ X“0a)0pf + 1 05 X650, f

= YP05(X%00 + X0)f + (vP95X*) D0 f

= Y0u(X°0uf) = (X7)

= “(Vg/)-

(\
o
<
N
8
>
—~
o
o
~
N—
I

Theorem 3.3. Let X,Y € S{(By,). If f € SY(B,y,), then

Vo x ("VY) = 0.
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Proof. If X,Y € S{(Bm), from (8) and (12), we have

ccvwX(va)
quIchI(vab)

— UUXICCVI(UUYf)
vuXIccVI (UUYB)
0
0
= VU Yy a ce VU B VU v ce VU 3 oo vEee 71”} 5
\‘)’(_/ Va( Y)‘i‘\)/(_/ va( Y)_|_ X va( Y)

0 0
0
= 0
Xa(aa(vvyﬁ) +CCI‘§K( YK)
0
0
X (@Y +oTE, 0y 4T, 0y 4 r ()

—— @ \0,_/ a” - Rl
0 —

0
= 0 s
0

which prove Theorem 3.3. O

Theorem 3.4. Let X be a projectable vector field on M, with projections
X on By,. IfY € $Y(By,), then

CCV ~('UUY) —vv (VXY) .

ce X
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Proof. f Y € S§(By,), and X is a projectable vector field on M,,, then
using (8), (10) and (12) we can find

oy ()
chIcch(vvyb)
— chIccVI(””Yg)
chIcch (vaﬁ)
0
= 0
chaccva(vaE) Joe xacey (vvyg) Lee XECCVE(UUYE)
0
= 0
X (0a("YP)) + (y70:X%) (0" Y7) 4o T (7Y K))
0
= 0
X (0a("YP) + T8,y 7))
0
= 0
(VxY)”
=" (ny) .

Thus, we have “V..¢("Y) =" (VxY). Where K = (c,7,7). O

Let there be given a projectable linear connection V and a projectable vector
field on M,, with projection X € S§(By,). Then the Lie derivative LV with

respect to X is, by definition, an element of $1(B,,) such that

(17) (LY. 2) = Lg(V32) - V3 (LzZ) = Viz 712

for any projectable vector fields 37', Ze I (M,y,).

A projectable vector field X € S3(M,,) [13] with components X = X (2%, 2%),+
X*(x*)0, is said to be an infinitesimal linear (resp. affine) transformation
([[16], p.67], [12]) in an m—dimensional manifold B,, with projectable linear
connection V, if LV = 0 (see (17)).

Theorem 3.5. Let V be a projectable linear connection on B,,. Then,

(Leeg V)Y, Z) == ((LgV)(V, )

for any projectable vector fields )N(, 177 Ze S (M,,).
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Proof. Substituting (11) and Theorem 2.1 in (17), we have
(L)?V)(Y,Z) LX(V?Z)—V~(L)}Z)—V[)? ?}Z
( LCXCCV)(CC}A}’CC Z)

Leei (“Verg8) = Veap (Leeg ™) = V]eeg )2
= Lex((V52) = Vey (5 2)) = Verpr )7
= (Lx(V32) = (Vo15D) = (Vi 7)
= (Lg(vy Z) Vi (L5Z) - V(g 57)
- {usmiz).

which is the proof of Theorem 3.5. -

Thus we have

Theorem 3.6. If X is an infinitesimal transformation of t(By,) with pro-
jectable linear connection V, then ““X is an infinitesimal transformation of
t(B,,) with projectable linear connection V.

Theorem 3.7. Let X and Y be projectable vector fields on M,, with pro-
jection X € S4(By,) and Y € S§(B,y,). We have:
(Z) ccva(HHi;) =0,
(i1) “Vuug("'Y)=""(VxY).

b
Vo x (

=

(ccvwx HHY

nents of “Veox (FHY) with respect to the coordinates
then we have

~\J ~ ~ _ ~
(CCV’U’UX(HHY)) _vv Xaccva(HHYJ)+M)XQCCVO¢(HHYJ)+UUXQCCVE(HHYJ).

(evex (7))

Proof. (i) If X,Y € S§(M,,) and (CCVWX (HHY) ) are the compo-
)
€

boaf ) on t(B,,),

Firstly, for J = b, we have

~ \b ~ ~ _ ~
(Ccvvux(HHY)) — wvya ccva(HHyb)+vaa ccva(HHyb) +vv Xaccva(HHyb)
0 0
— Xa(aayb-i-ccr%c(HHi;C)
S~ N~
0 0
+ Ty (YY) + L (1Y)
——

——
0 0
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by virtue of (8), (12) and (16). Secondly, for J = S, we have

~\B ~ ~ _ ~
(CCV’UUX(HHY)) — wvya ccva(HHy,B) + v ya Ccva (HHyﬁ) +vv Xaccva(HHYB)
0 0
_ Xa(aayﬁ + chgc(HH?c>
SN ~——~—
0 0
+ T, (1Y) + T (1Y)
—— ——

0 0

by virtue of (8), (12) and (16). Thirdly, for J = 3, then we have

~\B o —— - o
(CCVM)((HHY)) — vvya ccva(HHyﬁ) + v o ccva (HHyﬁ) _|_vv Xaccva(HHyﬂ)
0 0
_ Xa(%(HHyﬁ) + ccrgc(HH?c)

——
0

cepB (HH< cerB_(HH~
+ FE’Y(WY_,) + Fa’y( Y ))
8 Yo 0
ay
= X -omf Tl YT + T8 v
3
= X*(-T8,Y7"+T5.Y7)
0

by virtue of (8), (12) and (16). Thus (¢) of Theorem 3.7 is proved.
o (CCVHH)}(vUY))b
(ii) If X,Y € S§(M,,) and (CCVHH)?(””Y))i are the components of
(cchH)?(vvy))B

(““Vuu ("Y)) with respect to the coordinates (2, z”, 27) on t(B,y), then we
have

(cchH)?(v'uY»J _HH )Zvaccva(vvyJ)_i_HH)’Zaccva(UtzyJ)_’_HH)'ZEccva(tzvyJ).
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Firstly, for J = b, we have

(cchH)?(va»b _ HH)’Zaccva(m)Yb) +HH )Z'accva(vvyb) +HH XHCCVE(UUYI))
_ a vy b cc b [vvye
= X (811(\ Y,)+ Fac(\ Y,)
0 0
ccb b N
T (V) 4 T (Y T))
0 0
vuysb cc b (vvye
DY) T (1Y)
0 0
Tb ceb vy
T (0Y0) 4 T (Y T))
0 0
+HHXQ(65(M)Yb) +cc Fbac(vvyc)
0 0
+CCF% (UUY’Y)+CCI‘%,(UUY7))
RANN ; ) . Y

+X%(0a(

-0
by virtue of (8), (12) and (16). Secondly, for J = 3, we have

(CCVHH)N((UUY))B _ HH)?accva(vvyﬁ) +HH )?accva(vvyﬁ) _|_HH Xﬁccva(vvyﬁ)
0 0 0
voy B cc 1B (vvyc
YD)+ (Y
0 0
+CCF,8’Y<UUY’Y) + chﬂ7(1)1)Y7))
IR a
0 0
voys B cc 1B (vvyc
YP) 4T (Y
0 0
_i_ccrﬁ’y('uvy'y) + CCFBV(UUYW)
[C 20N 2 @
0 0
+HH)?E(%(vvyﬁ) Jee Fgc(vvyc
0 0
VUV chEf VUV
0 0

= Xa(aa(
+X*(0a(

)

)

T
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by virtue of (8), (12) and (16). Thirdly, for J = 3, then we have
(CCVHH)}(UUY))B _ HH)Z—accva(vvyﬁ) +HH XQCCVQ(UUYE) +HH X-HCCVE(UUYE)
= XY0a(YP) +°T8 (Y )
—— S~
0 0
+ch§7(va'y) + ccrgﬁ(vvyﬁ))
—— N
0 0
FX (0o (Y?) +T5(Y0)

vv YC
——
0

_i_ccrgV ('va'y) + CCFBV(UUYW))
XTI~ A N~
0 Y~

)

Fﬂ

ay

«@ B ce B (vvyc

+X*(0x(Y") +°Tge( z/
0

(UY7) + “T25("Y7))
0 0

= X%0,YP+TE Y7)

= (VxY)’

by virtue of (8), (12) and (16). On the other hand, we know that *¥ (VxY)
have the components

cc E
+T5

0
VU (VXY) — O
(VxY)”?
with respect to the coordinates (z°, 2, JJE> on t(By,). Thus, we have
CCVHH)?(UU}/) — VU (va)
in t(B,). O
Let there be given a projectable linear connection V in B,,. Taking account
of the definition (15) of the horizontal lift, we have from (13):
Vg (MY) = (VY) +9(R(, X)Y),
for any X,Y € S§(M,,). Where R(, X)Y denotes a tensor field F of type (1, 1)
in B,, such that F(Z) = R(Z, X)Y for any Z € 34(By,).
~ HH ~ HH ~
HHXI(al (HHyb) fee FI}K( HHyK))
Proof. If X,Y € S§(M,) and | HHXI(9,(" " YB) 4ee ¥ (77 Y E))
~ HH ~— 3 HH
TEXT O Y+ Thr( YH))

are the components of “’V 4 ¢ (HHY) with respect to the coordinates (z°, z°, zP)
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on t(B,,), then we have

H (v y) = (CCVHH)N((HH?))J.

Firstly, for J = b, we have

b

H(yyy)! = <CCVHHX HHy))
— HHZI(g,(HHYYY yoe b (HHYK))
— HHxa(g, (HHYbY) fecpb (HHYK)) (HH Yoy (HHyb)
yeert (HHYKY)) (HH @9 (HHYby yeepb  (HHYK))

K(
HHX“(aa(Yb) chZC(HH}'}c) + CCFZ,Y(HH?'Y) + CCFZV(HH?V))
—— —— —— ——"

0 0 0 0
I (0 (V) + Tho(HHV) 490 T4 (A7) 4 Tl (HHYT)
—— ——
0 0
~_ —~b ~ ~ ~_
_’_HHXa(aa(Y ) _,'_ch%C(HHyc) +CCF%’Y(HHYW)+CCF%7(HHyv))
—— —— —— ——
0 0 0 0
XY T2 Y7)
T(VxY)’

by virtue of (12) and (16). Secondly, for J = /3, we have

~\B
(CCVHHQ(HHY))
HH)’ZI(@I(HH}'}B) qee F?K(HH?K»
HHXa(aa(HHyﬁ) +CCF5K(HHYK)) +HH Xa(aa(HHyﬁ)
+CCF§K(HHYK)) _|_HH XE(@J(HHyﬁ) —|—CCF§K(HHYK))
HHjZa(aayﬂ_Fchgc(HHi}c)+CCFEW(HH)77)+ch57(HH}77))

0 0 0 0
+HH)?a(aayﬂ + ccl—\gc(HHi}c) Jece FQV(HH}N/V) + CCFQV(HH?W))
~—— ——
0 0
_,'_HH)Z'E(aay,B + ch§C<HH)7C) + CCFQ,Y(HH}’;’Y) + CCF27<HH?7))
0 0 0 0

X(0,YP +TEY7)
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by virtue of (12) and (16). Thirdly, for J = 3, then we have

HH (va)B

(CCVHHX HHy)>
HHXI(@I(HHyﬂ) ce F?K(HH}N/K))
HH)?a(aa(HHyﬁ) ce FEK(HH}A}K))
+HH)}Q(8Q(HHY5) Jee FgK(HH}'}K))
_,'_HHXE((%(HHY/E) fce PgK(HHf/K))
HH)Zva(aa(HHi}ﬁ) + ccrgc(HHf/c>
g
TV 4 T (Y T)

——
0 0
+HHX&(§Q(HH}7£) + ccrgc(HHf/c)
———

0
+T0 (Y ) + T (MY
N——"
s,
+11 X7 (9(VP) + “TL (1Y)
N~
0
+ T, (THY7) + T o5 (1Y)
N——" N——"
rs, 0
X (0a(~yTLsY?)) + X (Ba(—yTLoY?)
0I5, Y 7)) + Ty (—y T sY7)
H(—y Y ) (Oa(—y T, Y) +T0,Y7)
XU((=0aT28)y"Y %) + X (=0al2 )y Y ?)
—y X TL4(0.Y?) =y T2 5(0aY?)
+X*(A.TE)y YT — XOTP T2,4°Y7)
T2yt XY — T2 4T8 4 X PY°

XYy (—0aTP s + 0.7, — T8, 19, +T8,T7,)

T8, T4 XY %y — TP " X0, Y?

v R XY 4 HH (VyY)?
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by virtue of (12) and (16). On the other hand, we know that ## (VxY) +
~v(R(,X)Y) have the components

HH (v, y)° 0
HI(TxY) +y(R(,X)Y) = [ #H(VxY)? | +| 0
HH (va)ﬁ yeRfa¢XaY¢

with respect to the coordinates (2, 2°, z°) on t(B,,). Thus, we have

g (1) = T (9 5) 45, X))

in ¢(B,). O

(1]

N
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