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NEW KINDS OF CONTINUITY IN FUZZY NORMED
SPACES

BiraAN HAZARIKA AND S. A. MOHIUDDINE*

Abstract. We first define the notions of filter continuous, filter sequen-
tially continuous and filter strongly continuous in the framework of fuzzy
normed space (FNS), and then we introduce the notion of filter slowly
oscillating sequences in the setting of FNS and shows that this notion is
stronger than slowly oscillating sequences. Further, we define the con-
cept of filter slowly oscillating continuous functions, filter Cesaro slowly
oscillating sequences as well as some other related notions in the afore-
mentioned space and investigate several related results.

1. Introduction

The notion of statistical convergence was first appeared under the name of
almost convergence in [52]. Later, this notion was defined by Fast [22] and
Steinhaus [47] in the same year (also see [24]), and many researchers were
further studied on it (see [3, 2, 30, 32, 40, 41]). The natural density of subsets
of N is the basic concept to define the statistical convergence. Let £ C N. The
natural or asymptotic density of E is denoted by §(FE) and is defined by

. |E(K)|
B =
where the limit exists, E(k) = {n < k : n € E}, and |E| denotes the cardi-
nality of the set E. A sequence (v,,) of real numbers is said to be statistically
convergent to v if for each € > 0, 6({m € N : |v,,, —v| > €}) =0, i.e.

lim l|{m <k:|om—vl>e€}=0.
k—oo k

The ideal convergence is the dual (equivalent) of the notion of filter conver-
gence initiated by Cartan [15] in 1937. The filter convergence is a generalized
form of classical convergence of a sequence and it is an important tool in gen-
eral topology and functional analysis. The ideal convergence was studied by
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Kostyrko, et al. [38], Nuray and Ruckle [44] independently, which is based on
the structure of admissible ideal I of subsets of N (also see [27, 42, 43, 45]). An
ideal I on N is a family of subsets of N which is closed under finite unions and
subsets of its elements.

A real valued function is continuous if and only if it preserves Cauchy se-
quences. Based on the idea of compactness in terms of sequences and conti-
nuity of a real valued function, different types of continuities were introduced,
for example, we refer to [5, 6, 8, 9, 10, 11, 12, 13, 21, 48, 49]. A real se-
quence (vy,) is called quasi-Cauchy if the sequence (Av,,) converges to 0, where
Ay, = Vg1 — Upy. Burton and Coleman [4] named these sequences as ” quasi-
Cauchy” and Cakalli [7] named as ”ward convergent to 0” sequences. Recall
that a real sequence (v,,,) is said to be I-convergent to ¢ if for every e > 0, the
set {m € N: |v,,, — €] > €} € I This can be written as I-lim v, = .

In this paper, we define the notions of filter continuous, filter sequentially
continuous and filter strongly continuous in the setting of fuzzy normed space
and then introduce the concepts of filter slowly oscillating sequences and filter
slowly oscillating continuous functions in the aforementioned space and inves-
tigate several related results.

2. Preliminaries and notations

A real sequence (v,,) is said to be slowly oscillating (SO, in short) if

’yliglJr fim,, m+11£1?§['ym] |Up B Um‘ =0,
where [ym] is the integral part of ym. This is equivalent that if (v, — v,) — 0
whenever 1 < £ — 1, as p,m — oo. For any given € > 0, there exists a = a(e) >
0 and N' = N (e) such that |v, —vy,| < eif m > N(e) and m < p < (1+a)m (see
[8, 14, 26, 28]). Let E C R. A function defined on E is called SO continuous if
it preserves SO sequences.

The fuzzy set theory was developed by L. Zadeh [51] in 1965. After the pio-
neering work of Zadeh, there has been a great effort to obtain fuzzy analogues
of classical theories. One of the most important problems in fuzzy topology
is to obtain an appropriate concept of fuzzy metric space. The fuzzy metric
space with the help of continuous t-norms was studied by George and Veera-
mani [25]. Katsaras [34] was initiated the idea of fuzzy norm to developed the
field of fuzzy functional analysis in 1984. The compactness in fuzzy minimal
spaces introduced by Alimohammady and Roohi [1]. Felbin [23] put forward the
concept of fuzzy norm on a linear space, which is based on the treatment of a
fuzzy metric introduced by Kaleva and Seikkala [33]. From a different approach
Cheng and Mordeson [17] defined another type of fuzzy norm on a linear space
whose associated fuzzy metric is of Kramosil and Michalek type [39]. Some
topological properties of fuzzy normed spaces were found in [50]. One can see
[29, 31, 46] for more details on fuzzy normed spaces. Based on George and
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Veeramani fuzzy metric space, Chugh and Rathi [16] introduced a new concept
of fuzzy normed space as a fuzzy metric space in which if p(z,y,t) = v(z —y, t)
for all z,y € X and t > 0, where X is a fuzzy normed space. The notion
of fuzziness are attracted many workers on sequence spaces and summability
theory to introduce different types of sequence spaces and study their different
properties. For further work on fuzzy, we refer to [18, 19, 20, 35, 36, 37].

We now recall the concept of the continuous t-norm, fuzzy metric space and
fuzzy normed space. Throughout the paper, we denoted by (0,1) the open
interval 0, 1].

Definition 2.1. A function * : [0,1] x [0,1] — [0, 1] is called a continuous
triangular norm (in short a t-norm) if the following conditions hold:

(i) = is commutative and associative;
(ii) * Is continuous;
(iii) for every a,8,7,A € [0,1] if « < v and B < A, then a % 8 < v x A
(order-preserving in both variables);
(iv) for every a € [0,1],« * 1 = « (natural element).

The followings are examples of ¢-norm:
(a) the product t-norm: for every o, 8 € [0,1], % 8 = .
(b) the Zadeh’s t-norm or the minimum: for every o, 8 € [0,1],ax 8 =
min{a, 5}.
(¢) the Lukasiewicz t-norm: for every a, 8 € [0,1], a* 8 = max{a+5—1,0}.
Let X be a nonempty set. A fuzzy subset A of X is characterized by its
membership function A : X — [0,1] and A(z) is interpreted as the degree of
membership of the element  in the fuzzy subset A for each z € X.

Definition 2.2. A fuzzy metric space is an ordered triple (X, p,*) such
that X is an arbitrary (nonempty) set, * is a continuous t-norm and p is a
fuzzy subset on X?x]0,+oo| satisfying, for all x,y,2 € X, and s,t > 0 the
following conditions:

(i) p(z,y,t) > 0;

(ii) w(z,y,t) =1 if and only if x = y;

(iil) p(z,y,t) = ply, , t);

(iv) plx,y,t) * ply, z,8) < p(z, 2,1 + s);

(v) u(z,y,.) :]0,4+00[— [0, 1] is continuous.

u Is called a fuzzy metric on X. The function u(zx,y,t) denote the degree of
nearness between x and y with respect to t.

Also the condition (i4) is equivalent to: u(x,z,t) = 1 for all x € X and
t >0, and p(z,y,t) <1 for all x #y and ¢t > 0.

Definition 2.3. A triplet (X, v, %) is called a fuzzy normed space (FNS, in
short) if X is a linear (or real) vector space, x is a continuous t-norm, and v is
a fuzzy subset on X x [0, +oo[ satistying the following conditions:
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(i) v(z,0) =0 for all x € X;
(ii) v(z,t)=1forallt >0 1f and only if x = 0;
(iii) v(azx,t) = v(z, |a\> for all a(#0) € R;
(iv) v(z,t) *v(y,s) <v(z+y,t+s) forall z,y € X and t,s € RT;
v) v(z,.):]0, —|—oo) [0, 1] is left continuous for all x € X;
)

(vi lim v(z,t)=1forallz € X and t € R*.
t—+o00

A FNS is a fuzzy metric space by setting u(x,y,t) = v(x—y,t), which is also
called the fuzzy metric induced by the fuzzy norm v. v(z,t) can be considered
as the degree of nearness of norm of x with respect to t.

Definition 2.4. Let (X, v, ) be a ENS. The open ball B(x,r,t) with center
at x € X and radius r € (0,1), t > 0 is defined as

B(z,rt)={ye X :v(x —y,t) >1—r}

Also a subset A C X is called open if for each x € A there exists ¢ > 0 and
€ (0,1) such that B(z,r,t) C A.

Definition 2.5. A sequence (v,,) in a ENS (X, v, *) is said to be convergent
to £ if for each r € (0,1) and each t > 0 there exists mg € N such that
V(v — €, t) > 1 —r for all m > my.

Definition 2.6. A sequence (v,,) in a FNS (X, v, ) is said to be Cauchy if
for each r € (0,1) and each t > 0 there exists mg € N such that v(v,, — vy, t) >
1 —r for all m,n > myg.

Definition 2.7. A sequence (vp,) in a FNS (X, v,*) converges to ¢ if and
only if v(vy, — £,t) — 1, as m — oo L.e. lim v(v, — ¢, t) = 1.
m—r o0
Definition 2.8. A FNS (X,v,*) is said to be complete if every Cauchy
sequence in X is converges to an element in X.

Definition 2.9. Let (X,v,*) and (Y, ¢, *) be two FNSs. A mapping h :
X — Y is said to be continuous at xg € X if forallz € X, for each e € (0,1) and
each t > 0, there exists a € (0,1) and s > 0 such that ¢ (h(z) —h(xo),t) > 1—e€
whenever v(x — xg,s) > 1 — a. The mapping h is continuous on X if it is
continuous at every point in X.

In the following sections, we consider X for a FNS (X, v, *). Otherwise, we
will be mentioned it.

3. Filter slowly oscillating sequences

The concepts of filter slowly oscillating sequence and filter slowly oscillating
continuous function are introduced and some interesting results related to these
notions are established.
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Definition 3.1. A nonempty family of sets F C P(N) is said to be a filter
on N if the following three properties are satisfied:
(i) 0 ¢F
(ii) for each A,B € F, we have ANB € F
(iii) for each A € F and each B D A, we have B € F.

Definition 3.2. A sequence (v,,) in a FNS X is said to be filter convergent
to £ if for each r € (0,1) and each t > 0 such that {m € N : v(v,, — {,t) >
1 —r} € F. We denote the set of all filter convergent sequence on (X, v, *) by
FC.

Definition 3.3. Let (X,v,*) and (Y, ¢, *) be two FNSs. A mapping h :
X — Y is said to be filter continuous at xq € X if for all x € X, for each
€ € (0,1) and each t > 0 there exists a € (0,1) and s > 0 such that

{r e X :¢(h(z) — h(xp),t) >1 —€e} € F
whenever
{reX v(x—1ny,s)>1—a}eF.

The mapping h is filter continuous on X if it is filter continuous at each point
on X.

Definition 3.4. Let (X,v,*) and (),v,*) be two FNSs. A mapping
h : X — Y is said to be filter sequentially continuous at xo € X if for any
sequence (vy,) in X such that h(v,,) —F h(xg) whenever v,, —x xz¢. Ie.
F— lim v(vm—x0,t) =1=F— lim ¢ (h(vm)—h(zg),t) =1 forallt > 0. If
m—00 m—r oo
h is filter sequentially continuous at each point of X then h is filter sequentially

continuous on X .

Definition 3.5. Let (X,v,*) and (Y, ¢, *) be two FNSs. A mapping h :
X — Y is said to be filter strongly continuous at xg € X' if for each t > O there
exists s > 0 such that

{2 € X : §(h(x) — h(z0),t) = v(z — w0,5)} € F.

h is filter strongly continuous on X if it is filter strongly continuous at every
point on X.

Definition 3.6. A sequence (v,,) of points in a FNS X is called quasi-
Cauchy if for each r € (0,1) and each t > 0 such that v(vy11 — U, t) > 1 —1.

Now we introduce the notion of filter quasi-Cauchy and filter slowly oscil-
lating sequences in FNS.

Definition 3.7. A sequence (v.,) of points in a FNS X is called filter
quasi-Cauchy if for each r € (0,1) and each t > 0 such that

{m eN:v(my1 —vm,t) >1—r} e F.

Example 3.8. For X =R, (v,,) = (Inm), (v;,) = (Inlnm) are filter quasi-
Cauchy sequences.
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Definition 3.9. A sequence (vy,) of points in a FNS Xis said to be filter
slowly oscillating (FSO, in short) if for each r € (0,1) and each t > 0, there
exist a > 0, a positive integer N such that

N<m<p<(Q+a)mandpeN:v(v, —vn,t)>1—r}eF.
It is obvious that a filter convergent sequence is FSO, because FC sequence

is filter Cauchy sequence, but the converse need not to be true. See the following
example.

For X = R, the sequence (v,,) = <Z 1) is FSO but not FC. From
i=1

definition it is clear that FSO sequences are not filter Cauchy in general. Also
from definition, follows that a SO sequence is FSO but the converse is not true
in general.
Example 3.10. For X = R, we define a sequence (v,,) by
S (=2)m  Jifm=14%m=1i%>+1,i € N;
™10 , otherwise
Then the sequence (vy,) is FSO, but not SO because

-2 .
|vi2y1 — vi2] = 3.2 - 0 as i — oo,

— 1 as?1— oo.

)
whenever 1 < (21742'1)

We now introduce the definition of filter slowly oscillating continuous as
follows:

Definition 3.11. Let K be subset of a FNS X. A function h defined on K
is called filter slowly oscillating continuous (FSOC, in short) if it transforms
FSO sequences to FSO sequences of points in K, that is, (h(v,,)) is FSO
whenever (v,,) is FSO sequences of points in K.

Proposition 3.12. The set FC is a proper subset of the set of FSO.
Proof. The proof of this result follows from the both definitions. O
Proposition 3.13. The set FSO is a closed subalgebra of {,.

Proof. The proof of this result follows from fact that sum of two FSO
sequences and product of FSO sequences is a FSO sequence. Also, FSO
sequences are bounded. O

Theorem 3.14. If h is FSOC on K C X then it is filter continuous on K.

Proof. Suppose that h is FSOC on K. Let (v,,) be a FC sequence of points
in K with F — limwv,, = x¢. Then the sequence

(W) = (01,00, V2,00, «y Uyn—1, V0, Vpns V0 ---)
is also FC to xg and hence (w,,) is FSO. Since h is FSOC, therefore
(h(wm)) = (h(v1), h(vo), h(va), h(v0), oy R(Vm—1), (o), h(Vym), h(v0), ...)
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is also a FSO sequence. Hence (h(wy,)) is a filter quasi-Cauchy sequence. Now
for 7 € (0,1) and for every ¢t > 0, there is an integer A/ > 0 such that

v(h(vy) — h(xp),t) > 1 —7r forn > N.
ie.
{m e N:v(h(vy) — h(xo),t) >1—r} € F.

It gives F — lim h(v.,) = h(vo). O
In general the converse is not true. For X = R, it follows from the function
h(z) = e and the sequence (v,,) = (Inm).

Corollary 3.15. If h is FSOC, then it is continuous in the ordinary sense.

Theorem 3.16. The sum of two FSOC functions is FSOC.

Proof. Let h and g be FSOC functions on K C X. To show that h + g is
FSOC on K. Let (v,,) be a FSO sequence in K. Then (h(v,,)) and (g(v.,))
are FSO sequences. Therefore for every r € (0,1) and every t > 0, there exist
a positive integers m; = mq(r) and mg = ma(r) such that

{m1 <p<(1—|—a)mandpEN:V(h(vp)—h(vm),;> >1—r}€.7:;

t
{mQ <p<(l+4a)m andpGN:y<g(vp)—g(vm)’2> > 1_7«} c F.
We choose my = max{m;j, ma}, then we have

{mo <p<(1+a)mand peN:v((h+g)(v) = (h+9)(vm),t) >1—r}

I_J{mlgpg(1—|—a)mandpEN:y(h(vp)—h(vm),;) >1_7~}

ﬂ{mg <p<(l4+amandpeN:v (g(vp) —g(vm),;> > l—r}.
Therefore,
{mo<p<(1l+aymandpeN:v((h+g)(vy) — (h+9g)(vm),t)>1—-r}eF.
This completes the proof. O

Theorem 3.17. If h is a uniformly continuous function on K C X, then h
is FSOC on K.

Proof. Suppose h is a uniformly continuous function on K. Let (v,,) be a
FSO sequence in K. Since h is uniformly continuous on K, then for r € (0,1)
and every t > 0 there exists s € (0,1) and every v > 0 such that v(h(z) —
h(y),v) > 1 — s whenever v(z — y,t) > 1 —r for every z,y € K. Since (v,,)
is FSO, for r € (0,1) and every ¢t > 0, there is a a > 0 and a positive integer
N = N(r) = Ni(s) such that

N<m<p<(Q+a)mand peN:v(v,—vy,t)>1-r}eF.
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Therefore, we have
{N<m<p<((l+a)mandpeN:v(h(vy)—h(vy),v)>1—s}eF.

It follows that (h(v,,)) is FSO. Hence h is FSOC on K. O
Definition 3.18. A sequence (v,,) in X is called filter Cesaro SO if (I,,) is

FSO, where l,, = L i Up, Is the Cesaro means of the sequence (v,,). Also a

function h on K C X p1glcalled filter Cesaro SO continuous if it preserves filter

Cesaro SO sequences in K.

By using the similar argument used in proof of Theorem 3.17, we immediately
have the following result.

Theorem 3.19. If h is a uniformly continuous on K C X and (vp,) is a
filter SO sequence in K, then (f(vy,)) is filter Cesaro SO.

Definition 3.20. A sequence of functions (h,,) on K C X is said to be
uniformly filter convergent to a function h if for r € (0,1) and for every t > 0
the set

{re K,meN:v(hy(z)—h(z),t)>1—1r} e F.

Theorem 3.21. If (h,,) is a sequence of FSOC functions on K C X and
(hp) Is uniformly filter convergent to a function h on K, then h is FSOC on
K.

Proof. Let (v,,) be any FSO sequence in K. Since (h,,) is uniformly filter
convergence to h then we have for r € (0,1) and every ¢t > 0

{a:eKandeN:V(hm(x)—h(m),;> >1—r}6]—'.

Also since each h,, is FSOC, 3 N > 0 and a > 0 such that
t
{Ngmgkg (1—|—a)mandkEN:V(hN(vk)—hN(vm),?)) >1—r} eF.

Therefore, we have

N<m<p<(Q+a)mand peN:v(h(vy) — h(vy),t) >1—r}

) —
{N<m<p<(1+a)mandp€N z/(h — ha(zm), ;)>1?"}
ﬁ{/\/gmgpg(1+a)mandp€N:1/<hN( p) — o (Um), >>1—r}

3
{N<m<p<(1+a)mandp€N V(hN(vp >>1r}.
It implies that
N<m<p<(Q+a)mand peN:v(h(v,) — h(vy),t) >1—r}eF.
This gives that (h(vy,)) is a FSO sequences in K. O
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Corollary 3.22. If (h,,) is a sequence of FSOC functions on K C X and
(hm) is uniformly convergent to a function h on K, then h is SO continuous
on K.

Using the same techniques as in Theorem 3.21, one can obtained the following
result.

Theorem 3.23. If (h,,) is a sequence of filter Cesaro SO continuous func-
tions on K C X and (h,,) is uniformly filter convergent to a function h on K,
then h is filter Cesaro SO continuous on K.

Theorem 3.24. Let X be complete. The set of all FSOC functions on
K C X is a closed subset of all continuous functions on K, that is FSCO(K) =
FSOC(K), where FSOC(K) denote the set of all cluster points of FSOC(K).

Proof. Let h be an element of FSOC(K). Then there is a sequence (h,,) in
FSOC(K) such that lim h,, = h. To show that h is FSOC on K. Now let

m—o0

(vm) be a FSO sequence in K. Since (hy,) converges to h, then for r € (0,1)
and every t > 0, there exists a positive integer N' = N(r) such that for all
x € K and for all m > N,

v (h(x) (@), ;) 1o

For all z € K, we have
t
{mEN:V(h(z)hm(x),3> >1T} eF.

Also since hy, is FSOC on K, then for r € (0,1) and for every ¢t > 0 there
exists a positive integer N'= N (r) such that

t
{Ngmgpg(1—|—a)mandp€N:V(hN(vp)—hN(vm),?)) >1—7’}€}".

Also we have

N<m<p<(Q+a)mand peN:v(h(v,) —h(vy),t) >1—r}
2 {N§m§p§ (1+a)mandp€N:y<h(vp)hN(vm),§> >17’}
ﬁ{NSmSpS(1+a)mandpENzl/(hN(vp)—hN(vm),;> >1—r}
H{Ngmgpg(1+a)mandp€N:y<hN(vp)h(vm),§> >1r}.
By the finite intersection property of F, gives that

{N<m<p<(l+4+a)mandpeN:v(h(vy)—h(vy),t)>1—r}eF.
Thus h is FSOC on K. O
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Corollary 3.25. Let X be complete. The set of all FSOC functions on
K C X is a complete subspace of the space of all continuous functions on K.

Definition 3.26. An element xg € X is called a filter limit point of K C X
if there is an K-valued sequence of points with filter limit xy. It follows that
the set of all filter limit points of K is equal to the set of all limit points of K
in the ordinary sense. An element xq in X is called a filter accumulation point
of a subset K if it is a filter limit point of the set K \ {x¢}. The set of all filter
accumulation points of K is equal to the set of all accumulation points of K in
the ordinary sense.

Definition 3.27. A function h on X is said to have a filter sequential limit
at a point xg of X if the image sequence (h(v,,)) is filter convergent to x
for any FC sequence (vy,) with filter limit xo and a function h is to be filter
sequentially continuous at a point xo of X if the sequence (h(vy,)) is FC to
h(zg) for a FC sequence (v,,) with filter limit xo. Then h is filter sequentially
continuous on X, if h is filter sequentially continuous at every point in X.

Lemma 3.28. A function h on X has a filter sequential limit at a point xq
of X if and only if it has a filter limit at a point xo of X in ordinary sense.

Proof. The proof follows immediately, because any FC sequence has a con-
vergent subsequence (also see [12]). O

Theorem 3.29. A function h is filter sequentially continuous on X if and
only if it is continuous in ordinary sense.

Proof. The proof follows from the fact that any FC sequence has a conver-
gent subsequence and Lemma 3.28. O

Theorem 3.30. Let h : X — X be any function and (v,,) be a sequence
in X such that F — lim wv,, = xo implies lim h(v,,) = h(xg), then it is a
m—r o0 m—r 00
constant function.

Proof. The proof follows form similar technique as used in [13, Theorem
3]. O

Theorem 3.31. If a function is SO continuous on K C X, then it is filter
sequentially continuous on K.

Proof. Let h be any SO continuous on K. Then h is continuous on K (see
[13, Theorem 3.1]. Also from Theorem 3.29, we get h is filter sequentially
continuous on K. O

Theorem 3.32. If a function is §-ward continuous on K C X then it is
filter sequentially continuous on K.

Proof. Given h is a d-ward continuous function on K. Then A is continuous
(see [9, Corollary 2]). Then h is filter sequentially continuous on K follows
from Theorem 3.29. O
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