Honam Mathematical J. ${\bf 43}$ (2021), No. 3, pp. 561–570 https://doi.org/10.5831/HMJ.2021.43.3.561

A BIFURCATION PHENOMENON FOR ONE-DIMENSIONAL MINKOWSKI-CURVATURE EQUATION

YONG-HOON LEE* AND RUI YANG

Abstract. In this paper, applying the bifurcation method and topological analysis, we investigate the global structures of solutions for onedimensional Minkowski-curvature problems under certain behavior of nonlinear term near zero.

1. Introduction

In this paper, we are concerned with the global structures of nodal solutions for the following one-dimensional problem

$$(P_{\lambda}) \qquad \begin{cases} -\left(\phi(u'(t))\right)' = \lambda m(t) f(u(t)), & t \in (0,T), \\ u(0) = 0 = u(T), \end{cases}$$

where $\phi(y) = \frac{y}{\sqrt{1-|y|^2}}, y \in (-1,1), \lambda$ is a positive real parameter, $m: (0,T) \rightarrow [0,\infty)$ satisfies $m \neq 0$ in any compact subinterval of $[0,T], f: (-a,a) \rightarrow \mathbb{R}$ is a continuous function with $0 < a \leq \infty$ and f(s)s > 0 for $s \neq 0$. Denote $f_0 \triangleq \lim_{s \to 0} \frac{f(s)}{s}$ and certain category of weight functions \mathcal{A} can be defined as

$$\mathcal{A} \triangleq \{ m \in L^1_{loc}(0,T) : \int_0^T \tau(T-\tau)m(\tau)d\tau < \infty \}.$$

In differential geometry and the theory of classical relativity, it plays a critical role in the study of determining existence and regularity properties of maximal and constant mean curvature hypersurfaces, see [1, 2, 3] and the references therein.

We say u a solution of problem (P_{λ}) if $u \in C[0,T] \cap C^1(0,T)$, |u'(t)| < 1 for $t \in (0,T)$, $\phi(u')$ is absolutely continuous in any compact subinterval of (0,T), and u satisfies the equation and the boundary conditions in problem (P_{λ}) . In

This work was financially supported by a 2-Year Research Grant of Pusan National University.

Received May 12, 2021. Accepted June 10, 2021.

²⁰²⁰ Mathematics Subject Classification. 34B09, 34B16, 34C23.

 $[\]operatorname{Key}$ words and phrases. bifurcation, positive solution, nodal solution.

^{*}Corresponding author

[26], the authors classified the solutions by introducing "non $\frac{\pi}{4}$ -tangential solution" defined as $u \in C^1[0,T]$ and |u'(t)| < 1 for $t \in [0,T]$ and " $\frac{\pi}{4}$ -tangential solution" defined as $u \in C^1[0,T]$ and either |u'(0)| = 1 or |u'(1)| = 1. Non $\frac{\pi}{4}$ -tangential solution has better topological properties for problem (P_{λ}) characterized by the second order mean curvature operator, for instance, [4, 5] used Leray-Schauder degree type arguments to study the nonexistence, existence, and multiplicity of radial solutions involving mean curvature operator in a bounded domain, which correspond to non $\frac{\pi}{4}$ -tangential solutions.

In Theorem 2.2 of [7], Coelho-Corsato-Obersnel-Omari studied positive solutions of the following one-dimensional problem by global bifurcation technique

(1)
$$\begin{cases} -\left(\phi(u'(t))\right)' = \lambda f(t, u(t)), \ t \in (0, T), \\ u(0) = 0 = u(T). \end{cases}$$

Under the assumptions

(A₁) $f: [0,T] \times \mathbb{R} \to \mathbb{R}$ satisfies the L^{∞} -Carathéodory conditions,

- (A₂) $\lim_{s \to 0^+} \frac{f(t,s)}{s} = m(t)$ uniformly almost everywhere in [0, T],
- (A₃) $m \in L^{\infty}(0,T)$ satisfies max{m,0} > 0,

they proved that there exists $\lambda_* \in (0, \lambda_1(m)]$ such that for all $\lambda \in (0, \lambda_*)$, problem (1) has no positive solution, and for all $\lambda \in (\lambda_1(m), \infty)$, it has at least one positive solution, where $\lambda_1(m)$ is the positive principal eigenvalue of problem (2) given below.

It is necessary to point out that the positive solution in [7] means non $\frac{\pi}{4}$ tangential solution. It is interesting to note that results on nodal solutions for the Dirichlet problem of the one-dimensional Minkowski-curvature equation, such as problem (P_{λ}) , have not been introduced yet. This motivates us to investigate bifurcations and asymptotic behaviors of solutions curves of problem (P_{λ}) under several behaviors of nonlinear term f near zero, *i.e.*, linear, superlinear, sublinear, respectively.

In this paper, we consider a bifurcation phenomenon of nodal solutions for the case that the nonlinear term is linear near zero, *i.e.* $0 < f_0 < \infty$. To state our main result, we define the subspace $E := \{u \in C^1[0,T] : u(0) = u(T) = 0\}$ with the norm $||u|| = ||u||_{\infty} + ||u'||_{\infty}$. Let N_k^+ $(k \in \mathbb{N})$ denote the set of $u \in E$ such that u has exactly k-1 simple interior zeros in (0,T), $u'(0^+) > 0$ and all zeros of u on [0,T] are simple. Set $N_k^- = -N_k^+$ and $N_k = N_k^- \cup N_k^+$. Denote the closure of the set of nontrivial solution pairs of problem (P_λ) by \mathcal{S} , that is,

 $\mathcal{S} = \overline{\{(\lambda, u) \in \mathbb{R} \times E : u \text{ is a nontrivial solution of problem } (D) \text{ with } \lambda > 0\}}.$ Let $\nu \in \{+, -\}$ and $\lambda_k(m)$ be the k-th eigenvalue of the following problem

(2)
$$\begin{cases} -u'' = \lambda m(t)u, & t \in (0,T) \\ u(0) = u(T) = 0. \end{cases}$$

The main result of this paper is the following.

A bifurcation phenomenon for one-dimensional Minkowski-curvature equation 563

Theorem 1.1. Assume $m \in \mathcal{A}$ and $0 < f_0 < \infty$. Then, for each $k \in \mathbb{N}$, there exist two unbounded continua C_k^+ and C_k^- of S bifurcating from $(\frac{\lambda_k(m)}{f_0}, 0)$, satisfying

- $\begin{array}{ll} (a) & \mathcal{C}_{k}^{\nu} \subset \left(\left((0,\infty\right) \times \{u \in N_{k}^{\nu} : \|u'\|_{\infty} < 1\}\right) \cup \{\left(\frac{\lambda_{k}(m)}{f_{0}}, 0\right)\}\right);\\ (b) & Proj_{\mathbb{R}}\mathcal{C}_{k}^{\nu} = [\lambda_{*},\infty) \subset (0,\infty), \mbox{ for some } \lambda_{*} \in \left(0,\frac{\lambda_{k}(m)}{f_{0}}\right];\\ (c) & \lim_{\lambda \to \infty} \|u'\|_{\infty} = 1, \mbox{ for } (\lambda,u) \in \mathcal{C}_{k}^{+} \mbox{ or } \mathcal{C}_{k}^{-}. \end{array}$

2. Proof of Theorem 1.1

In this section, under conditions $m \in \mathcal{A}$ and $0 < f_0 < \infty$, we prove the existence of unbounded continuum C_k of problem (P_{λ}) using bifurcation theory and then show some properties of solutions in C_1 .

To get a continuous function on \mathbb{R} , we define $\widetilde{f} : \mathbb{R} \to \mathbb{R}$ as

$$\widetilde{f}(s) = \begin{cases} f(s), & s \in \left[-\frac{T}{2}, \frac{T}{2}\right],\\ \text{linear}, & s \in \left(-T, -\frac{T}{2}\right) \cup \left(\frac{T}{2}, T\right),\\ 0, & s \in \left(-\infty, -T\right] \cup \left[T, \infty\right). \end{cases}$$

We see that problem (P_{λ}) is equivalent to the same type problem with f replaced with f. So we replace f with f and for simplicity, we still denote f by f. Define function

$$h(s) = \begin{cases} \left(\sqrt{1-s^2}\right)^3, & |s| \le 1, \\ 0, & |s| > 1. \end{cases}$$

Then we transform the problem (P_{λ}) to the following form

(S_{$$\lambda$$})
$$\begin{cases} -u'' = \lambda m(t) f(u) h(u'), \ t \in (0,T), \\ u(0) = 0 = u(T). \end{cases}$$

The following lemma shows that problem (S_{λ}) is equivalent to problem (P_{λ}) . The proof is similar to Lemma 3.1 in [19].

Lemma 2.1. A function $u \in E$ is a non $\frac{\pi}{4}$ -tangential solution of problem (P_{λ}) if and only if it is a solution of problem (S_{λ}) .

Proof. It is clear that every solution $u \in E$ of problem (P_{λ}) is a solution of problem (S_{λ}) . Now we show that every solution $u \in E$ of problem (S_{λ}) is also a solution of problem (P_{λ}) . For this, we need to prove $||u'||_{\infty} < 1$. We prove it by contradiction. Suppose that $||u'||_{\infty} = 1$. It is known that there exists $t^* \in (0,T)$ such that $u'(t^*) = 0$, so $u'(t^*) = 0$. Since u' is continuous and $||u'||_{\infty} = 1$, without loss of generality, we choose $t_{\max} \in (0,T)$ satisfying $|u'(t_{\max})| = 1$. Thus, $0 < t^* < t_{\max} \le T$ or $0 \le t_{\max} < t^* < T$. We only consider the former case. The other case can be proved similarly. It satisfies

 $u'(t^*) = 0$, |u'(t)| < 1 in (t^*, t_{\max}) , and $|u'(t_{\max})| = 1$. It is easy to see that u satisfies the equation

$$-\phi(u'(t))' = \lambda m(t) f(u(t)), \ t \in [t^*, t_{\max}).$$

Integrating both sides of the above equation over $[t^*, t)$ for $t \in [t^*, t_{\max})$, by using the fact $mf(u) \in L^1(0, T)$, we get

$$\phi(u'(t)) = -\lambda \int_{t^*}^t m(\tau) f(u(\tau)) d\tau,$$

and then

$$\begin{aligned} |u'(t)| &= \left| \phi^{-1} \left(-\lambda \int_{t^*}^t m(\tau) f(u(\tau)) d\tau \right) \right| \\ &= \phi^{-1} \left(\lambda \left| \int_{t^*}^t m(\tau) f(u(\tau)) d\tau \right| \right), \ t \in [t^*, t_{\max}), \end{aligned}$$

and

$$\lim_{\phi \neq t_{\max}} |u'(t)| = \phi^{-1} \left(\lambda \left| \int_{t^*}^{t_{\max}} m(\tau) f(u(\tau)) d\tau \right| \right).$$

Since $\lambda \left| \int_{t^*}^{t_{\max}} m(\tau) f(u(\tau)) d\tau \right| < \infty$, we get $|u'(t_{\max})| < 1$. This is a contradiction.

Existence results and properties of eigenvalues for the weighted eigenvalue problem (2) are studied by Asakawa [16] as follows.

Lemma 2.2. Assume $m \in \mathcal{A}$. Then the set of all nonnegative eigenvalues of problem (3.1) is a countable set $\{\lambda_n(m) : n \in \mathbb{N}\}$ satisfying $0 < \lambda_1(m) < \cdots < \lambda_n(m) < \cdots \to \infty$. Moreover, the algebraic multiplicity of $\lambda_n(m)$ is 1. Let u_n be a corresponding characteristic function to $\lambda_n(m)$, then the number of interior simple zeros of u_n in (0, T) is n - 1.

Note that $N_k \cap N_j = \emptyset$ if $k \neq j$ and N_k^{\pm} and N_k are open in E. By the condition $0 < f_0 < \infty$, we define a continuous function $\xi : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(s) = (f_0 + \xi(s)) s$$
 and $\lim_{s \to 0} \xi(s) = 0$

From now on, we consider the following problem as a bifurcation problem

(W)
$$\begin{cases} -u'' = \lambda \left(f_0 + \xi(u) \right) m(t) u h(u'), \ t \in (0, T), \\ u(0) = 0 = u(T). \end{cases}$$

The pair $(\lambda, u) \in \mathbb{R} \times E$ is a solution of problem (W) if and only if it is a solution of the equation

(D)
$$u = \lambda \mathcal{L}u + \mathcal{H}(\lambda, u),$$

where the operator $\mathcal{L}: E \to E$ is defined as

$$\mathcal{L}u(t) = f_0 \int_0^T G(t,s)m(s)u(s)ds,$$

A bifurcation phenomenon for one-dimensional Minkowski-curvature equation 565

and operator $\mathcal{H}:\mathbb{R}\times E\rightarrow E$ is defined as

$$\mathcal{H}(\lambda, u(t)) = \int_0^T G(t, s) \left\{ \lambda f_0 m(s) u(s) \left[h(u'(s)) - 1 \right] + \lambda \xi(u(s)) m(s) u(s) h(u'(s)) \right\} ds,$$

with G(t,s) given by

$$G(t,s) = \begin{cases} \frac{1}{T}(T-t)s, \ 0 \le s \le t \le T, \\ \frac{1}{T}(T-s)t, \ 0 \le t \le s \le T. \end{cases}$$

It is not difficult to check that \mathcal{L} is compact linear in E, \mathcal{H} is completely continuous in $\mathbb{R} \times E$ and $\mathcal{H} = o(||u||)$ near u = 0 uniformly on bounded λ intervals. It is either not difficult to check that problem (W) does not have a nontrivial solution if $\lambda \leq 0$. Denote by \mathcal{S} the closure in $\mathbb{R} \times E$ of the set of all nontrivial solution pairs of problem (D) with $\lambda > 0$, that is,

$$\mathcal{S} = \overline{\{(\lambda, u) \in \mathbb{R} \times E : u \text{ is a nontrivial solution of problem } (D) \text{ with } \lambda > 0\}}$$

Similar to Lemma 3.5 and Lemma 3.7 in [20] with $\beta \equiv 1$, the following Lemma 2.3, Lemma 2.4, and Lemma 2.5 can be proved respectively.

Lemma 2.3. Assume $(\lambda, u) \in C_k$ and $u \in \partial N_k^+$. Also assume that there exists a sequence $\{(\lambda_n, u_n)\} \subset S \cap ([0, \infty) \times N_k^+)$ converging to (λ, u) in $\mathbb{R} \times E$. Then, $(\lambda, u) = (\frac{\lambda_k(m)}{f_0}, 0)$.

Lemma 2.4. Assume $(\lambda, u) \in C_k$ and $u \in \partial N_k^-$. Also assume that there exists a sequence $\{(\lambda_n, u_n)\} \subset S \cap ([0, \infty) \times N_k^-)$ converging to (λ, u) in $\mathbb{R} \times E$. Then, $(\lambda, u) = (\frac{\lambda_k(m)}{f_0}, 0)$.

Lemma 2.5.
$$\mathcal{C}_k \subset ([0,\infty) \times N_k^+) \cup ([0,\infty) \times N_k^-) \cup (\frac{\lambda_k(m)}{f_0},0)$$

We show the asymptotic behavior of $||u'||_{\infty}$. The following two lemmas are inspired by Lemma 4.1 and Theorem 1.3 in [20]. we also give their proofs for readers' convenience.

Lemma 2.6. Assume that $(\lambda, u) \in C_k^{\nu} \setminus \{(\frac{\lambda_k(m)}{f_0}, 0)\}$. Then there exists a positive constant b_0 such that $||u'||_{\infty} \ge b_0$ as $\lambda \to \infty$.

Proof. Suppose on the contrary that there exists a sequence $\{(\lambda_n, u_n)\} \subset C_k^+ \setminus \{(\frac{\lambda_k(m)}{f_0}, 0)\}$ satisfying $||u'_n||_{\infty} \to 0$ as $\lambda_n \to \infty$. Together with the fact that $|u_n(t)| \leq \frac{T}{2} ||u'_n||_{\infty}$ for $t \in [0, T]$, it follows that

$$\lim_{n \to \infty} (\lambda_n, u_n) = (\infty, 0).$$

On the other hand, $\{(\lambda_n, u_n)\}$ satisfies problem (D) and then by Lemma 2.3, we can deduce that $\lim_{n \to \infty} \lambda_n = \frac{\lambda_k(m)}{f_0}$, which contradicts $\lim_{n \to \infty} \lambda_n = \infty$. \Box

Lemma 2.7. $\lim_{\lambda \to \infty} ||u'||_{\infty} = 1$, for $(\lambda, u) \in \mathcal{C}_k^{\nu}$.

Proof. To show the asymptotic behavior of $||u'||_{\infty}$ as $\lambda \to \infty$ for $(\lambda, u) \in C_k^{\pm} \setminus \{(\frac{\lambda_k(m)}{f_0}, 0)\}$, without loss of generality, we choose a sequence $(\lambda_n, u_n) \in C_k^{\pm} \setminus \{(\frac{\lambda_k(m)}{f_0}, 0)\}$ satisfying $\lambda_n \to \infty$ as $n \to \infty$. It follows from Lemma 2.6 that there exist two constants $\delta > 0$ and $N_0 \in \mathbb{N}^+$ such that $||u'_n||_{\infty} \ge \delta$ for all $n \ge N_0$. Hence, we will consider the subsequence $(\lambda_n, u_n) \in C_k^{\pm} \setminus \{(\frac{\lambda_k(m)}{f_0}, 0)\}$ for all $n \ge N_0$ from now. By the definition of N_k^+ , $u_n(t)$ has k-1 simple zeros in (0,T). Then we denote the zeros on [0,T] by $0 = t_n^0 < t_n^1 < \cdots < t_n^{k-1} < t_n^k = T$ and $t_n^{**} \in [0,T]$ satisfying $|u'_n(t_n^{**})| = ||u'_n||_{\infty} \ge \delta$. Then there exists $j \in \{0, 1, \cdots, k-1\}$ such that $t_n^{**} \in [t_n^j, t_n^{j+1}]$.

Claim 1. $t_n^{**} = t_n^j$ or t_n^{j+1} .

Ì

Assume that $u_n(t)$ is positive in (t_n^j, t_n^{j+1}) (similar argument for the negative case). Obviously, u'_n has at least one zero in (t_n^j, t_n^{j+1}) . Let $t_n^* = \min\{t \in (t_n^j, t_n^{j+1}) : u'_n(t) = 0\}$. We integrate the first equation in problem (P_λ) from t_n^* to t for $t \in [t_n^j, t_n^{j+1}]$ to get

$$u'_n(t) = -\phi^{-1}\left(\int_{t_n^*}^t \lambda_n m(\tau) f(u_n(\tau)) d\tau\right).$$

It can be seen that $u'_n(t)$ is decreasing on $[t_n^*, t_n^{j+1}]$ and $u'_n(t) < 0$ in $(t_n^*, t_n^{j+1}]$, $u'_n(t)$ is decreasing on $[t_n^j, t_n^*]$ and $u'_n(t) > 0$ in $[t_n^j, t_n^*)$. Thus, t_n^* is the unique zero of $u'_n(t)$, $u'(t) \le u'(t_n^j)$ on $[t_n^j, t_n^*]$ and $|u'(t)| \le |u'(t_n^{j+1})|$ on $[t_n^*, t_n^{j+1}]$. It follows that $t_n^{**} = t_n^j$ or t_n^{j+1} . Without loss of generality, we only consider case $t_n^{**} = t_n^j$, then we can get case (ii) after some suitable modifications. Define

$$F_n(s) = \max_{t \in [s,t_n^*]} u'_n(t), \ s \in [t_n^j, t_n^*], \text{ for all } n \ge N_0.$$

Then $F_n(s)$ is nonincreasing on $[t_n^j, t_n^*]$. Furthermore, there exists $\delta_0 > 0$ such that

$$F_n(t_n^j) = u'_n(t_n^j) = ||u'_n||_{\infty} \ge \delta_0$$
, for all $n \ge N_0$.

Continuity of u'_n provides the existence of $\rho_n \in (t^j_n, t^*_n)$ with $F_n(\rho_n) = \frac{\delta_0}{2}$. Set

$$\rho_* = \liminf_{n \to \infty} \rho_n,$$

$$t_{\infty}^* = \liminf_{n \to \infty} t_n^*,$$

$$t_{\infty}^j = \liminf_{n \to \infty} t_n^j,$$

$$F(s) = \limsup_{n \to \infty} F_n(s).$$

It can be obtained directly that $\rho_* \leq t_{\infty}^*$. Choosing a subsequence, we have

$$F(\rho_*) = \lim_{n \to \infty} F_n(\rho_n) = \frac{\delta_0}{2}$$
 and $F(t^*_{\infty}) = \lim_{n \to \infty} F_n(t^*_n).$

If $\rho_* = t_{\infty}^*$, choosing a subsequence, we have

$$\frac{\delta_0}{2} = F(t_\infty^*) = \lim_{n \to \infty} F_n(t_n^*) = 0,$$

and this is a contradiction. Thus, $\rho_* < t^*_{\infty}$. Similarly, it has $\rho_* > t^j_{\infty}$ since if $\rho_* = t^j_{\infty}$, we have $\frac{\delta_0}{2} = F(t^j_{\infty}) = \lim_{n \to \infty} F_n(t^j_n) \ge \delta_0$ and we get a contradiction.

Claim 2. For any given $\tilde{\rho} \in (0, t_{\infty}^* - \rho_*)$, there exists a constant σ_0 such that $u_n(t^*_{\infty} - \widetilde{\rho}) \ge \sigma_0$ for *n* large enough.

Suppose on the contrary that $u_n(t_{\infty}^* - \tilde{\rho}) \to 0$ as $n \to \infty$. For any sufficiently small $\bar{\rho} \in (0, \rho_* - t_{\infty}^j)$ and n large enough, we have $[t_{\infty}^j + \bar{\rho}, t_{\infty}^* - \tilde{\rho}] \subset [t_n^j, t_n^*]$. Integrating the first equation in (P_{λ}) from t_n^* to t for $t \in [t_n^j, t_n^{j+1}]$, we get

$$u'_{n}(t) = -\phi^{-1}\left(\int_{t_{n}^{*}}^{t} \lambda_{n} m(\tau) f(u_{n}(\tau)) d\tau\right),$$

it can be seen that $u_n(t)$ is increasing in (t_n^j, t_n^*) and decreasing in (t_n^*, t_n^{j+1}) . By virtue of the monotonicity of u_n in (t_n^j, t_n^*) , one has that $u_n(t) \to 0$ as $n \to \infty$, for all $t \in [t_{\infty}^{j} + \overline{\rho}, t_{\infty}^{*} - \widetilde{\rho}]$. It follows that

$$\int_{t_{\infty}^{j}+\overline{\rho}}^{t} u_{n}'(\tau) d\tau = u_{n}(t) - u_{n}(t_{\infty}^{j}+\overline{\rho}) \to 0,$$

as $n \to \infty$, for all $t \in [t_{\infty}^j + \overline{\rho}, t_{\infty}^* - \widetilde{\rho}]$. From the Fatou Lemma, we obtain

$$0 \leq \int_{t_{\infty}^{j} + \overline{\rho}}^{t} \liminf_{n \to \infty} u_{n}'(\tau) d\tau \leq \liminf_{n \to \infty} \int_{t_{\infty}^{**} + \overline{\rho}}^{t} u_{n}'(\tau) d\tau = 0$$

for all $t \in [t_{\infty}^j + \overline{\rho}, t_{\infty}^* - \widetilde{\rho}]$. It follows that

$$\int_{t_{\infty}^{j}+\overline{\rho}}^{t}\liminf_{n\to\infty}u_{n}'(\tau)d\tau=0$$

for all $t \in [t_{\infty}^j + \overline{\rho}, t_{\infty}^* - \widetilde{\rho}]$. In particular, one has that

$$\int_{t_{\infty}^{j}+\overline{\rho}}^{t_{\infty}^{*}-\widetilde{\rho}}\liminf_{n\to\infty}u_{n}'(\tau)d\tau=0.$$

We deduce that $\liminf u'_n \equiv 0$ a.e. on $[t^j_{\infty} + \overline{\rho}, t^*_{\infty} - \widetilde{\rho}]$. Thus, there exists a subsequence of $\{u'_n\}$, say $\{u'_n\}$ again, such that $u'_n \to 0$ as $n \to \infty$ for all $t \in [t^j_\infty + \overline{\rho}, t^*_\infty - \widetilde{\rho}]$. And $u'_n(t^j_\infty + \overline{\rho}) \to 0$ as $n \to \infty$. It follows from the arbitrary of $\overline{\rho}$ that $u'_n(t^j_\infty) \to 0$ as $n \to \infty$. By choosing a subsequence, it gives

$$u'_n(t^j_n) \to 0 \text{ as } n \to \infty.$$

Consequently, for $\varepsilon = \frac{1}{2}\delta_0$, there exists a sufficiently large n such that $|u'_n(t^j_n)| < \varepsilon$ ε . It follows that $\|u'_n\|_{\infty} = |u'_n(t_n^j)| < \frac{\delta_0}{2}$ for sufficiently large n, which contradicts the fact of $\|u'_n\|_{\infty} \ge \delta_0$, for all $n \ge N_0$.

Now we take n large enough such that $[t_{\infty}^j + \frac{\overline{\rho}}{2}, t_{\infty}^* - \frac{\widetilde{\rho}}{2}] \subset [t_n^j, t_n^*]$. It follows from (3.9) that, for all $t \in [t_{\infty}^{j} + \overline{\rho}, t_{\infty}^{*} - \widetilde{\rho}]$,

$$|u'_n(t)| = \phi^{-1}\left(\left|\lambda_n \int_{t_n^*}^t m(\tau)f(u_n(\tau))d\tau\right|\right).$$

By setting $t = t_{\infty}^* - \tilde{\rho}$ in the above equality and using the Claim, it gives

$$|u_n'(t_{\infty}^* - \widetilde{\rho})| = \phi^{-1} \left(\lambda_n \int_{t_{\infty}^* - \widetilde{\rho}}^{t_n^*} m(\tau) f(u_n(\tau)) d\tau \right),$$

and then

$$1 \ge \|u_n'\|_{\infty} \ge |u_n'(t_{\infty}^* - \widetilde{\rho})| \ge \phi^{-1} \left(\lambda_n \int_{t_{\infty}^* - \widetilde{\rho}}^{t_{\infty}^* - \widetilde{\rho}} m(\tau) f(u_n(\tau)) d\tau\right) \to 1,$$

 $\to \infty.$ Therefore, $\lim \|u_n'\|_{\infty} = 1.$

as $n \to \infty$. Therefore, $\lim_{n \to \infty} \|u'_n\|_{\infty} = 1$.

Proof of Theorem 1.1. By applying the Rabinowitz type global bifurcation theory (see Theorem 1.3 in [15]) and Lemma 2.2, we conclude that, for each $k \in \mathbb{N}^+$, there exists a continuum \mathcal{C}_k in \mathcal{S} bifurcating from $\mathbb{R} \times \{0\}$ at $\left(\frac{\lambda_k(m)}{f_0}, 0\right)$ which either is unbounded or contains a pair $\left(\frac{\widehat{\lambda}(m)}{f_0}, 0\right)$ for characteristic value $\frac{\widehat{\lambda}(m)}{f_0}$ of \mathcal{L} with $\widehat{\lambda}(m) \neq \lambda_k(m)$. It follows from Lemma 2.5 that the second alternative cannot occur. Consequently, the first alternative is the only possibility and then C_k is unbounded. Furthermore, using Theorem 2 in [25], we can decompose \mathcal{C}_k into two unbounded subcontinua \mathcal{C}_k^+ and \mathcal{C}_k^- such that either \mathcal{C}_k^+ and \mathcal{C}_k^- are both unbounded or $\mathcal{C}_k^+ \cap \mathcal{C}_k^- \neq \{(\frac{\lambda_k(m)}{f_0}, 0)\}$. By Lemma 2.5 and the fact $||u'||_{\infty} < 1$ for all $(\lambda, u) \in \mathcal{C}_k$, we can set that $\mathcal{C}_k^+ \subset ([0, \infty) \times \mathbb{C}_k)$ $\{u \in N_k^+ : \|u'\|_{\infty} < 1\}) \cup \{(\frac{\lambda_k(m)}{f_0}, 0)\} \text{ and } \mathcal{C}_k^- \subset ([0, \infty) \times \{u \in N_k^- : \|u'\|_{\infty} < 1\}) \cup \{(\frac{\lambda_k(m)}{f_0}, 0)\}.$ Claim that \mathcal{C}_k^+ and \mathcal{C}_k^- are both unbounded in λ -direction. Suppose the contrary, then there exists $(\lambda_0, u_0) \neq (\frac{\lambda_k(m)}{f_0}, 0)$ such that $(\lambda_0, u_0) \in \mathcal{C}_k^+ \cap \mathcal{C}_k^-$ and $u_0 \in N_k^+ \cap N_k^-$. This is a contradiction. Together with Lemma 2.1, (a) is attained.

Now, we prove (b). Denote $L_{f_0} = \max_{s \in [-\frac{T}{2}, \frac{T}{2}]} \frac{f(s)}{s}$. Obviously, $f_0 \leq L_{f_0} < \infty$.

Let χ be an eigenfunction corresponding to the eigenvalue $\frac{\lambda_k(m)}{f_0}$ of problem (2). Let $\lambda \geq 0$ and $u \in E$ be a (k-1)-nodal solution of problem (P_{λ}) . Let $\{t_i\}$ and $\{s_i\}$ be the simple zeros of u and χ with $0 = t_0 < t_1 < \cdots < t_k = 1$ and $0 = s_0 < s_1 < \cdots < s_k = 1$, respectively. Then there exist $i, j \in \mathbb{N}$ such that $(t_{i-1}, t_i) \subset (s_{j-1}, s_j)$. We rewrite (t_{i-1}, t_i) by (a, b). Taking y = u, $b_1(t) = \lambda m(t) f(u(t)) / u(t)$, and $z = \chi$, $b_2(t) = \lambda_k(m) m(t)$ in Lemma 2.5 of [20]

(set $\beta(t) \equiv 1$), we have

$$\int_{a}^{b} \left(b_{1}(t) - b_{2}(t) \right) |u|^{2} dt > 0.$$

Since $b_1(t) = \lambda m(t) f(u(t)) / u(t) \le \lambda L_{f_0} m(t)$, we get

$$\lambda L_{f_0} \int_a^b m(t) |u|^2 dt > \lambda_k(m) \int_a^b m(t) |u|^2 dt.$$

This implies that

$$\lambda > \frac{\lambda_k(m)}{L_{f_0}}.$$

Thus, there exists $\lambda_* > 0$ such that $\lambda \ge \lambda_*$ for all $(\lambda, u) \in \mathcal{C}_k^{\nu}$. Together with the unboundedness of \mathcal{C}_k^{ν} in λ -direction, we conclude $\operatorname{Proj}_{\mathbb{R}}\mathcal{C}_k^{\nu} = [\lambda_*, \infty) \subset (0, \infty)$. Moreover, it can be obtained directly from Lemma 2.7 that $\lim_{\lambda \to \infty} \|u'\|_{\infty} = 1$,

for $(\lambda, u) \in \mathcal{C}_k^{\nu} \setminus \{(\frac{\lambda_k(m)}{f_0}, 0)\}, i.e., (c) \text{ is proved. The proof is completed.} \square$

Remark 2.8. If $L_{f_0} = f_0$ in the above proof, then $Proj_{\mathbb{R}}C_k^{\nu} = [\frac{\lambda_k(m)}{f_0}, \infty)$.

References

- R. Bartnik, L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys. 87 (1982) 131-152.
- [2] A.E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math. 66 (1982) 39-56.
- [3] C. Gerhardt, H-surfaces in Lorentzian manifolds, Commun. Math. Phys. 89 (1983) 523-553.
- [4] C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces, Math. Nachr. 283 (2010) 379-391.
- [5] C. Bereanu, P. Jebelean, J. Mawhin, Multiple solutions for Neumann and periodic problems with singular φ-Laplacian, J. Funct. Anal. 261 (2011) 3226-3246.
- [6] C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities, Calc. Var. 46 (2013) 113-122.
- [7] I. Coelho, C. Corsato, F. Obersnel, P. Omari, Positive solutions of the Dirichlet problem for one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud. 12 (2012) 621-638.
- [8] C. Bereanu, P. Jebelean, P.J. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal. 264 (2013) 270-287.
- C. Bereanu, P. Jebelean, P.J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal. 265 (2013) 644-659.
- [10] C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces, Proc. Amer. Math. Soc. 137 (2009) 161-169.
- [11] R. Ma, H. Gao, Y. Lu, Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal. 270 (2016) 2430-2455.
- [12] G. Dai, Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space, Calc. Var. 55 (2016) 1-17.

- [13] G. Dai, J. Wang, Nodal solutions to problem with mean curvature operator in Minkowski space, Differential and Integral Equations 30 (2017) 463-480.
- [14] B.H. Im, E.K. Lee, Y.H. Lee, A global bifurcation phenomenon for second order singular boundary value problems, J. Math. Anal. Appl. 308 (2005) 61-78.
- P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971) 487-513.
- [16] H. Asakawa, Nonresonant singular two-point boundary value problems, Nonlinear Anal. 44 (2001) 791-809.
- [17] R. Kajikiya, Y.H. Lee, I. Sim, One-dimensional p-Laplacian with a strong singular indefinite weight, I. Eigenvalue, J. Differential Equations 244 (2008) 1985-2019.
- [18] R. Kajikiya, Y.H. Lee, I. Sim, Bifurcation of sign-changing solutions for onedimensional p-Laplacian with a strong singular weight; p-sublinear at ∞, Nonlinear Anal. 71 (2009) 1235-1249.
- [19] R. Yang, Y.H. Lee, Bifurcation of positive radial solutions for a prescribed mean curvature problem on an exterior domain, Advances in Differential Equations 25 Number 3-4 (2020) 161-190.
- [20] R. Yang, Y.H. Lee, and I. Sim, Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain, J. Differential Equations 268 (2020) 4464-4490.
- [21] J.K. Hunter, B. Nachtergaele, Applied Analysis, World Scientific, London 2001.
- [22] G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958.
- [23] R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal. 71 (2009) 4364-4376.
- [24] H. Luo, R. Ma, The existence and application of unbounded connected components, J. Appl. Math. 2014 (2014), 7 pp.
- [25] E.N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 1069-1076.
- [26] R. Yang, I. Sim, and Y.H. Lee, [#]₄-tangentiality of solutions for one-dimensional Minkowski-curvature problems, Advances in Nonlinear Analysis 9(1) (2020) 1463-1479.

Yong-Hoon Lee Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea. E-mail: yhlee@pusan.ac.kr

Rui Yang School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, P.R. China. E-mail: ruiyang@csu.edu.cn