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A BIFURCATION PHENOMENON FOR ONE-DIMENSIONAL

MINKOWSKI-CURVATURE EQUATION

Yong-Hoon Lee∗ and Rui Yang

Abstract. In this paper, applying the bifurcation method and topo-

logical analysis, we investigate the global structures of solutions for one-
dimensional Minkowski-curvature problems under certain behavior of non-

linear term near zero.

1. Introduction

In this paper, we are concerned with the global structures of nodal solutions
for the following one-dimensional problem−

(
ϕ(u′(t))

)′
= λm(t)f(u(t)), t ∈ (0, T ),

u(0) = 0 = u(T ),
(Pλ)

where ϕ(y) = y√
1−|y|2

, y ∈ (−1, 1), λ is a positive real parameter, m : (0, T ) →
[0,∞) satisfies m ̸≡ 0 in any compact subinterval of [0, T ], f : (−a, a) → R
is a continuous function with 0 < a ≤ ∞ and f(s)s > 0 for s ̸= 0. Denote

f0 , lim
s→0

f(s)
s and certain category of weight functions A can be defined as

A , {m ∈ L1
loc(0, T ) :

∫ T

0

τ(T − τ)m(τ)dτ < ∞}.

In differential geometry and the theory of classical relativity, it plays a
critical role in the study of determining existence and regularity properties
of maximal and constant mean curvature hypersurfaces, see [1, 2, 3] and the
references therein.

We say u a solution of problem (Pλ) if u ∈ C[0, T ]∩C1(0, T ), |u′(t)| < 1 for
t ∈ (0, T ), ϕ(u′) is absolutely continuous in any compact subinterval of (0, T ),
and u satisfies the equation and the boundary conditions in problem (Pλ). In
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[26], the authors classified the solutions by introducing “non π
4 -tangential so-

lution” defined as u ∈ C1[0, T ] and |u′(t)| < 1 for t ∈ [0, T ] and “π
4 -tangential

solution” defined as u ∈ C1[0, T ] and either |u′(0)| = 1 or |u′(1)| = 1. Non
π
4 -tangential solution has better topological properties for problem (Pλ) char-
acterized by the second order mean curvature operator, for instance, [4, 5]
used Leray-Schauder degree type arguments to study the nonexistence, exis-
tence, and multiplicity of radial solutions involving mean curvature operator
in a bounded domain, which correspond to non π

4 -tangential solutions.
In Theorem 2.2 of [7], Coelho-Corsato-Obersnel-Omari studied positive solu-

tions of the following one-dimensional problem by global bifurcation technique−
(
ϕ(u′(t))

)′
= λf

(
t, u(t)

)
, t ∈ (0, T ),

u(0) = 0 = u(T ).
(1)

Under the assumptions

(A1) f : [0, T ]× R → R satisfies the L∞-Carathéodory conditions,

(A2) lim
s→0+

f(t,s)
s = m(t) uniformly almost everywhere in [0, T ],

(A3) m ∈ L∞(0, T ) satisfies max{m, 0} > 0,

they proved that there exists λ∗ ∈ (0, λ1(m)] such that for all λ ∈ (0, λ∗),
problem (1) has no positive solution, and for all λ ∈ (λ1(m),∞), it has at
least one positive solution, where λ1(m) is the positive principal eigenvalue of
problem (2) given below.

It is necessary to point out that the positive solution in [7] means non π
4 -

tangential solution. It is interesting to note that results on nodal solutions for
the Dirichlet problem of the one-dimensional Minkowski-curvature equation,
such as problem (Pλ), have not been introduced yet. This motivates us to
investigate bifurcations and asymptotic behaviors of solutions curves of prob-
lem (Pλ) under several behaviors of nonlinear term f near zero, i.e., linear,
superlinear, sublinear, respectively.

In this paper, we consider a bifurcation phenomenon of nodal solutions for
the case that the nonlinear term is linear near zero, i .e. 0 < f0 < ∞. To state
our main result, we define the subspace E := {u ∈ C1[0, T ] : u(0) = u(T ) = 0}
with the norm ∥u∥ = ∥u∥∞ + ∥u′∥∞. Let N+

k (k ∈ N) denote the set of u ∈ E
such that u has exactly k− 1 simple interior zeros in (0, T ), u′(0+) > 0 and all
zeros of u on [0, T ] are simple. Set N−

k = −N+
k and Nk = N−

k ∪N+
k . Denote

the closure of the set of nontrivial solution pairs of problem (Pλ) by S, that is,

S = {(λ, u) ∈ R× E : u is a nontrivial solution of problem (D) with λ > 0}.

Let ν ∈ {+,−} and λk(m) be the k-th eigenvalue of the following problem{
−u′′ = λm(t)u, t ∈ (0, T ),

u(0) = u(T ) = 0.
(2)

The main result of this paper is the following.
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Theorem 1.1. Assume m ∈ A and 0 < f0 < ∞. Then, for each k ∈ N,
there exist two unbounded continua C+

k and C−
k of S bifurcating from (λk(m)

f0
, 0),

satisfying

(a) Cν
k ⊂ (((0,∞)× {u ∈ Nν

k : ∥u′∥∞ < 1}) ∪ {(λk(m)
f0

, 0)});
(b) ProjRCν

k = [λ∗,∞) ⊂ (0,∞), for some λ∗ ∈ (0, λk(m)
f0

];

(c) lim
λ→∞

∥u′∥∞ = 1, for (λ, u) ∈ C+
k or C−

k .

2. Proof of Theorem 1.1

In this section, under conditions m ∈ A and 0 < f0 < ∞, we prove the existence
of unbounded continuum Ck of problem (Pλ) using bifurcation theory and then
show some properties of solutions in C1.

To get a continuous function on R, we define f̃ : R → R as

f̃(s) =


f(s), s ∈ [−T

2 ,
T
2 ],

linear, s ∈ (−T,−T
2 ) ∪ (T2 , T ),

0, s ∈ (−∞,−T ] ∪ [T,∞).

We see that problem (Pλ) is equivalent to the same type problem with f re-

placed with f̃ . So we replace f with f̃ and for simplicity, we still denote f̃ by
f . Define function

h(s) =

{(√
1− s2

)3
, |s| ≤ 1,

0, |s| > 1.

Then we transform the problem (Pλ) to the following form{
−u′′ = λm(t)f(u)h(u′), t ∈ (0, T ),

u(0) = 0 = u(T ).
(Sλ)

The following lemma shows that problem (Sλ) is equivalent to problem (Pλ).
The proof is similar to Lemma 3.1 in [19].

Lemma 2.1. A function u ∈ E is a non π
4 -tangential solution of problem

(Pλ) if and only if it is a solution of problem (Sλ).

Proof. It is clear that every solution u ∈ E of problem (Pλ) is a solution
of problem (Sλ). Now we show that every solution u ∈ E of problem (Sλ) is
also a solution of problem (Pλ). For this, we need to prove ∥u′∥∞ < 1. We
prove it by contradiction. Suppose that ∥u′∥∞ = 1. It is known that there
exists t∗ ∈ (0, T ) such that u′(t∗) = 0, so u′(t∗) = 0. Since u′ is continuous
and ∥u′∥∞ = 1, without loss of generality, we choose tmax ∈ (0, T ) satisfying
|u′(tmax)| = 1. Thus, 0 < t∗ < tmax ≤ T or 0 ≤ tmax < t∗ < T . We only
consider the former case. The other case can be proved similarly. It satisfies
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u′(t∗) = 0, |u′(t)| < 1 in (t∗, tmax), and |u′(tmax)| = 1. It is easy to see that u
satisfies the equation

−ϕ(u′(t))′ = λm(t)f
(
u(t)

)
, t ∈ [t∗, tmax).

Integrating both sides of the above equation over [t∗, t) for t ∈ [t∗, tmax), by
using the fact mf(u) ∈ L1(0, T ), we get

ϕ(u′(t)) = −λ

∫ t

t∗
m(τ)f

(
u(τ)

)
dτ,

and then

|u′(t)| =
∣∣∣∣ϕ−1

(
−λ

∫ t

t∗
m(τ)f

(
u(τ)

)
dτ

)∣∣∣∣
= ϕ−1

(
λ

∣∣∣∣∫ t

t∗
m(τ)f

(
u(τ)

)
dτ

∣∣∣∣) , t ∈ [t∗, tmax),

and

lim
t→tmax

|u′(t)| = ϕ−1

(
λ

∣∣∣∣∫ tmax

t∗
m(τ)f

(
u(τ)

)
dτ

∣∣∣∣) .

Since λ
∣∣∣∫ tmax

t∗
m(τ)f

(
u(τ)

)
dτ
∣∣∣ < ∞, we get |u′(tmax)| < 1. This is a contradic-

tion.

Existence results and properties of eigenvalues for the weighted eigenvalue prob-
lem (2) are studied by Asakawa [16] as follows.

Lemma 2.2. Assume m ∈ A. Then the set of all nonnegative eigenvalues
of problem (3.1) is a countable set {λn(m) : n ∈ N} satisfying 0 < λ1(m) <
· · · < λn(m) < · · · → ∞. Moreover, the algebraic multiplicity of λn(m) is 1.
Let un be a corresponding characteristic function to λn(m), then the number
of interior simple zeros of un in (0, T ) is n− 1.

Note that Nk ∩ Nj = ∅ if k ̸= j and N±
k and Nk are open in E. By the

condition 0 < f0 < ∞, we define a continuous function ξ : R → R satisfying

f(s) = (f0 + ξ(s)) s and lim
s→0

ξ(s) = 0.

From now on, we consider the following problem as a bifurcation problem{
−u′′ = λ (f0 + ξ(u))m(t)uh(u′), t ∈ (0, T ),

u(0) = 0 = u(T ).
(W )

The pair (λ, u) ∈ R × E is a solution of problem (W ) if and only if it is a
solution of the equation

u = λLu+H(λ, u),(D)

where the operator L : E → E is defined as

Lu(t) = f0

∫ T

0

G(t, s)m(s)u(s)ds,
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and operator H : R× E → E is defined as

H(λ, u(t)) =

∫ T

0
G(t, s)

{
λf0m(s)u(s)

[
h(u′(s))− 1

]
+ λξ(u(s))m(s)u(s)h(u′(s))

}
ds,

with G(t, s) given by

G(t, s) =

{
1
T (T − t)s, 0 ≤ s ≤ t ≤ T,
1
T (T − s)t, 0 ≤ t ≤ s ≤ T.

It is not difficult to check that L is compact linear in E, H is completely
continuous in R × E and H = o(∥u∥) near u = 0 uniformly on bounded λ
intervals. It is either not difficult to check that problem (W ) does not have a
nontrivial solution if λ ≤ 0. Denote by S the closure in R× E of the set of all
nontrivial solution pairs of problem (D) with λ > 0, that is,

S = {(λ, u) ∈ R× E : u is a nontrivial solution of problem (D) with λ > 0}.

Similar to Lemma 3.5 and Lemma 3.7 in [20] with β ≡ 1, the following
Lemma 2.3, Lemma 2.4, and Lemma 2.5 can be proved respectively.

Lemma 2.3. Assume (λ, u) ∈ Ck and u ∈ ∂N+
k . Also assume that there

exists a sequence {(λn, un)} ⊂ S ∩ ([0,∞)×N+
k ) converging to (λ, u) in R×E.

Then, (λ, u) = (λk(m)
f0

, 0).

Lemma 2.4. Assume (λ, u) ∈ Ck and u ∈ ∂N−
k . Also assume that there

exists a sequence {(λn, un)} ⊂ S ∩ ([0,∞)×N−
k ) converging to (λ, u) in R×E.

Then, (λ, u) = (λk(m)
f0

, 0).

Lemma 2.5. Ck ⊂ ([0,∞)×N+
k ) ∪ ([0,∞)×N−

k ) ∪ (λk(m)
f0

, 0).

We show the asymptotic behavior of ∥u′∥∞. The following two lemmas are
inspired by Lemma 4.1 and Theorem 1.3 in [20]. we also give their proofs for
readers’ convenience.

Lemma 2.6. Assume that (λ, u) ∈ Cν
k \ {(λk(m)

f0
, 0)}. Then there exists a

positive constant b0 such that ∥u′∥∞ ≥ b0 as λ → ∞.

Proof. Suppose on the contrary that there exists a sequence {(λn, un)} ⊂
C+
k \ {(λk(m)

f0
, 0)} satisfying ∥u′

n∥∞ → 0 as λn → ∞. Together with the fact

that |un(t)| ≤ T
2 ∥u

′
n∥∞ for t ∈ [0, T ], it follows that

lim
n→∞

(λn, un) = (∞, 0).

On the other hand, {(λn, un)} satisfies problem (D) and then by Lemma 2.3,

we can deduce that lim
n→∞

λn = λk(m)
f0

, which contradicts lim
n→∞

λn = ∞.

Lemma 2.7. lim
λ→∞

∥u′∥∞ = 1, for (λ, u) ∈ Cν
k .
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Proof. To show the asymptotic behavior of ∥u′∥∞ as λ → ∞ for (λ, u) ∈
C±
k \ {(λk(m)

f0
, 0)}, without loss of generality, we choose a sequence (λn, un) ∈

C+
k \ {(λk(m)

f0
, 0)} satisfying λn → ∞ as n → ∞. It follows from Lemma 2.6

that there exist two constants δ > 0 and N0 ∈ N+ such that ∥u′
n∥∞ ≥ δ for all

n ≥ N0. Hence, we will consider the subsequence (λn, un) ∈ C+
k \ {(λk(m)

f0
, 0)}

for all n ≥ N0 from now. By the definition of N+
k , un(t) has k− 1 simple zeros

in (0, T ). Then we denote the zeros on [0, T ] by 0 = t0n < t1n < · · · < tk−1
n <

tkn = T and t∗∗n ∈ [0, T ] satisfying |u′
n(t

∗∗
n )| = ∥u′

n∥∞ ≥ δ. Then there exists
j ∈ {0, 1 · · · , k − 1} such that t∗∗n ∈ [tjn, t

j+1
n ].

Claim 1. t∗∗n = tjn or tj+1
n .

Assume that un(t) is positive in (tjn, t
j+1
n ) (similar argument for the negative

case). Obviously, u′
n has at least one zero in (tjn, t

j+1
n ). Let t∗n = min{t ∈

(tjn, t
j+1
n ) : u′

n(t) = 0}. We integrate the first equation in problem (Pλ) from t∗n
to t for t ∈ [tjn, t

j+1
n ] to get

u′
n(t) = −ϕ−1

(∫ t

t∗n

λnm(τ)f(un(τ))dτ

)
.

It can be seen that u′
n(t) is decreasing on [t∗n, t

j+1
n ] and u′

n(t) < 0 in (t∗n, t
j+1
n ],

u′
n(t) is decreasing on [tjn, t

∗
n] and u′

n(t) > 0 in [tjn, t
∗
n). Thus, t∗n is the unique

zero of u′
n(t), u

′(t) ≤ u′(tjn) on [tjn, t
∗
n] and |u′(t)| ≤ |u′(tj+1

n )| on [t∗n, t
j+1
n ]. It

follows that t∗∗n = tjn or tj+1
n . Without loss of generality, we only consider case

t∗∗n = tjn, then we can get case (ii) after some suitable modifications. Define

Fn(s) = max
t∈[s,t∗n]

u′
n(t), s ∈ [tjn, t

∗
n], for all n ≥ N0.

Then Fn(s) is nonincreasing on [tjn, t
∗
n]. Furthermore, there exists δ0 > 0 such

that

Fn(t
j
n) = u′

n(t
j
n) = ∥u′

n∥∞ ≥ δ0, for all n ≥ N0.

Continuity of u′
n provides the existence of ρn ∈ (tjn, t

∗
n) with Fn(ρn) =

δ0
2 . Set

ρ∗ = lim inf
n→∞

ρn,

t∗∞ = lim inf
n→∞

t∗n,

tj∞ = lim inf
n→∞

tjn,

F (s) = lim sup
n→∞

Fn(s).

It can be obtained directly that ρ∗ ≤ t∗∞. Choosing a subsequence, we have

F (ρ∗) = lim
n→∞

Fn(ρn) =
δ0
2

and F (t∗∞) = lim
n→∞

Fn(t
∗
n).
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If ρ∗ = t∗∞, choosing a subsequence, we have

δ0
2

= F (t∗∞) = lim
n→∞

Fn(t
∗
n) = 0,

and this is a contradiction. Thus, ρ∗ < t∗∞. Similarly, it has ρ∗ > tj∞ since
if ρ∗ = tj∞, we have δ0

2 = F (tj∞) = lim
n→∞

Fn(t
j
n) ≥ δ0 and we get a contradiction.

Claim 2. For any given ρ̃ ∈ (0, t∗∞ − ρ∗), there exists a constant σ0 such that
un(t

∗
∞ − ρ̃) ≥ σ0 for n large enough.

Suppose on the contrary that un(t
∗
∞ − ρ̃) → 0 as n → ∞. For any sufficiently

small ρ ∈ (0, ρ∗ − tj∞) and n large enough, we have [tj∞ + ρ, t∗∞ − ρ̃] ⊂ [tjn, t
∗
n].

Integrating the first equation in (Pλ) from t∗n to t for t ∈ [tjn, t
j+1
n ], we get

u′
n(t) = −ϕ−1

(∫ t

t∗n

λnm(τ)f(un(τ))dτ

)
,

it can be seen that un(t) is increasing in (tjn, t
∗
n) and decreasing in (t∗n, t

j+1
n ). By

virtue of the monotonicity of un in (tjn, t
∗
n), one has that un(t) → 0 as n → ∞,

for all t ∈ [tj∞ + ρ, t∗∞ − ρ̃]. It follows that∫ t

tj∞+ρ

u′
n(τ)dτ = un(t)− un(t

j
∞ + ρ) → 0,

as n → ∞, for all t ∈ [tj∞ + ρ, t∗∞ − ρ̃].
From the Fatou Lemma, we obtain

0 ≤
∫ t

tj∞+ρ

lim inf
n→∞

u′
n(τ)dτ ≤ lim inf

n→∞

∫ t

t∗∗∞+ρ

u′
n(τ)dτ = 0,

for all t ∈ [tj∞ + ρ, t∗∞ − ρ̃]. It follows that∫ t

tj∞+ρ

lim inf
n→∞

u′
n(τ)dτ = 0,

for all t ∈ [tj∞ + ρ, t∗∞ − ρ̃]. In particular, one has that∫ t∗∞−ρ̃

tj∞+ρ

lim inf
n→∞

u′
n(τ)dτ = 0.

We deduce that lim inf
n→∞

u′
n ≡ 0 a.e. on [tj∞ + ρ, t∗∞ − ρ̃]. Thus, there exists

a subsequence of {u′
n}, say {u′

n} again, such that u′
n → 0 as n → ∞ for all

t ∈ [tj∞ + ρ, t∗∞ − ρ̃]. And u′
n(t

j
∞ + ρ) → 0 as n → ∞. It follows from the

arbitrary of ρ that u′
n(t

j
∞) → 0 as n → ∞. By choosing a subsequence, it gives

u′
n(t

j
n) → 0 as n → ∞.

Consequently, for ε = 1
2δ0, there exists a sufficiently large n such that |u′

n(t
j
n)| <

ε. It follows that ∥u′
n∥∞ =

∣∣u′
n(t

j
n)
∣∣ < δ0

2 for sufficiently large n, which contra-
dicts the fact of ∥u′

n∥∞ ≥ δ0, for all n ≥ N0.
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Now we take n large enough such that [tj∞ + ρ
2 , t

∗
∞ − ρ̃

2 ] ⊂ [tjn, t
∗
n]. It follows

from (3.9) that, for all t ∈ [tj∞ + ρ, t∗∞ − ρ̃],

|u′
n(t)| = ϕ−1

(∣∣∣∣∣λn

∫ t

t∗n

m(τ)f(un(τ))dτ

∣∣∣∣∣
)
.

By setting t = t∗∞ − ρ̃ in the above equality and using the Claim, it gives

|u′
n(t

∗
∞ − ρ̃)| = ϕ−1

(
λn

∫ t∗n

t∗∞−ρ̃

m(τ)f(un(τ))dτ

)
,

and then

1 ≥ ∥u′
n∥∞ ≥ |u′

n(t
∗
∞ − ρ̃)| ≥ ϕ−1

(
λn

∫ t∗∞− ρ̃
2

t∗∞−ρ̃

m(τ)f(un(τ))dτ

)
→ 1,

as n → ∞. Therefore, lim
n→∞

∥u′
n∥∞ = 1.

Proof of Theorem 1.1. By applying the Rabinowitz type global bifurcation
theory (see Theorem 1.3 in [15]) and Lemma 2.2, we conclude that, for each

k ∈ N+, there exists a continuum Ck in S bifurcating from R×{0} at
(

λk(m)
f0

, 0
)

which either is unbounded or contains a pair
(

λ̂(m)
f0

, 0
)
for characteristic value

λ̂(m)
f0

of L with λ̂(m) ̸= λk(m). It follows from Lemma 2.5 that the second

alternative cannot occur. Consequently, the first alternative is the only possi-
bility and then Ck is unbounded. Furthermore, using Theorem 2 in [25], we can
decompose Ck into two unbounded subcontinua C+

k and C−
k such that either

C+
k and C−

k are both unbounded or C+
k ∩ C−

k ̸= {(λk(m)
f0

, 0)}. By Lemma 2.5

and the fact ∥u′∥∞ < 1 for all (λ, u) ∈ Ck, we can set that C+
k ⊂ ([0,∞) ×

{u ∈ N+
k : ∥u′∥∞ < 1}) ∪ {(λk(m)

f0
, 0)} and C−

k ⊂ ([0,∞) × {u ∈ N−
k :

∥u′∥∞ < 1}) ∪ {(λk(m)
f0

, 0)}. Claim that C+
k and C−

k are both unbounded in

λ-direction. Suppose the contrary, then there exists (λ0, u0) ̸= (λk(m)
f0

, 0) such

that (λ0, u0) ∈ C+
k ∩ C−

k and u0 ∈ N+
k ∩N−

k . This is a contradiction. Together
with Lemma 2.1, (a) is attained.

Now, we prove (b). Denote Lf0 = max
s∈[−T

2 ,T2 ]

f(s)
s . Obviously, f0 ≤ Lf0 < ∞.

Let χ be an eigenfunction corresponding to the eigenvalue λk(m)
f0

of problem

(2). Let λ ≥ 0 and u ∈ E be a (k − 1)-nodal solution of problem (Pλ). Let
{ti} and {si} be the simple zeros of u and χ with 0 = t0 < t1 < · · · < tk = 1
and 0 = s0 < s1 < · · · < sk = 1, respectively. Then there exist i, j ∈ N
such that (ti−1, ti) ⊂ (sj−1, sj). We rewrite (ti−1, ti) by (a, b). Taking y = u,
b1(t) = λm(t)f(u(t))/u(t), and z = χ, b2(t) = λk(m)m(t) in Lemma 2.5 of [20]
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(set β(t) ≡ 1), we have ∫ b

a

(b1(t)− b2(t)) |u|2dt > 0.

Since b1(t) = λm(t)f(u(t))/u(t) ≤ λLf0m(t), we get

λLf0

∫ b

a

m(t)|u|2dt > λk(m)

∫ b

a

m(t)|u|2dt.

This implies that

λ >
λk(m)

Lf0

.

Thus, there exists λ∗ > 0 such that λ ≥ λ∗ for all (λ, u) ∈ Cν
k . Together with the

unboundedness of Cν
k in λ-direction, we conclude ProjRCν

k = [λ∗,∞) ⊂ (0,∞).
Moreover, it can be obtained directly from Lemma 2.7 that lim

λ→∞
∥u′∥∞ = 1,

for (λ, u) ∈ Cν
k \ {(λk(m)

f0
, 0)}, i.e., (c) is proved. The proof is completed.

Remark 2.8. If Lf0 = f0 in the above proof, then ProjRCν
k = [λk(m)

f0
,∞).
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