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SYMMETRIC TOEPLITZ DETERMINANTS ASSOCIATED

WITH A LINEAR COMBINATION OF SOME GEOMETRIC

EXPRESSIONS

Om P. Ahuja, Kanika Khatter∗, and V. Ravichandran

Abstract. Let f be the function defined on the open unit disk, with
f(0) = 0 = f ′(0) − 1, satisfying Re

(
αf ′(z) + (1 − α)zf ′(z)/f(z)

)
> 0

or Re
(
αf ′(z) + (1 − α)(1 + zf ′′(z)/f ′(z)

)
> 0 respectively, where 0 ≤

α ≤ 1. Estimates for the Toeplitz determinants have been obtained when

the elements are the coefficients of the functions belonging to these two

subclasses.

1. Introduction

Let A be the class of all normalized analytic functions

(1) f(z) = z +

∞∑
n=2

anz
n

defined in the open unit disk D := {z ∈ C : |z| < 1} and S be its subclass
consisting of univalent functions in D. Motivated by an open research problem
raised by Hayman [6] in 1967, many linear combinations of the geometric ex-
pressions of the form (1− β)F (z) + βG(z) for real or complex constant β were
studied. In particular, attentions were devoted to the class of β-starlike (or β-
convex) functions f ∈ A satisfying the condition

(2) Re
(
(1− β)F (z) + βG(z)

)
> 0

where F (z) = zf ′(z)/f(z) and G(z) = 1 + zf ′′(z)/f ′(z) for real or complex β
and for all z ∈ D; see for example (Mocanu [14], Miller, Mocanu and Reade
1973 [12] and Miller, Mocanu and Reade 1978 [13]).

In 1975, Al Amiri and Reade [3] introduced and studied properties of a class
of functions f satisfying the condition (2), where F (z) = f ′(z) and G(z) =
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1+ zf ′′(z)/f ′(z) for fixed β and for all z ∈ D. More precisely, they studied the
class

(3) Q(β) :=

{
f ∈ A : Re

(
(1− β)f ′(z) + β

(
1 +

zf ′′(z)

f ′(z)

))
> 0, z ∈ D

}
where β is a real number. They showed that f ∈ Q(β), β ≤ 0, satisfies
Re f ′(z) > 0 for all z ∈ D. Therefore, by a criterion of Noshiro [15] and
Warschawski [18], f ∈ Q(β), β ≤ 0, must be univalent in D. In 1987, Ahuja and
Silverman [1] observed that the convex function f defined by f(z) = z/(1− z)
is not in the class Q(β) for any β > 0 and β ̸= 1. Thus, a function f ∈ Q(β)
for β > 0 and β ̸= 1 need not be univalent in D. Also see [17]. In addition to
these properties, we observe that by dividing the inequality in (3) by β, β ̸= 0,
and letting k = 1/β − 1, we see that (3) can be written as

(4) Re
(
1 +

zf ′′(z)

f ′(z)
+ kf ′(z)

)
> 0, z ∈ D,

where k → −1 as β → ∞.
For convenience, we writeQ(1−α) as L(α) and define another classM(α) by

choosing functions F (z) and G(z) in (2) by the geometric expressions: F (z) =
f ′(z), G(z) = zf ′(z)/f(z). More precisely, for any fixed real number α in [0, 1],
we define

(5) L(α) :=
{
f ∈ A : Re

(
αf ′(z) + (1− α)

(
1 +

zf ′′(z)

f ′(z)

))
> 0

}
.

and

(6) M(α) :=

{
f ∈ A : Re

(
αf ′(z) + (1− α)

zf ′(z)

f(z)

)
> 0

}
.

Note that for β = 1 − α, L(α) = Q(β). In view of this fact, it follows that a
function belonging to L(α) must be univalent in D when α ≥ 1. On the other
hand, using argument given in [1], it follows that a function f in L(α) need not
be univalent in D for α < 1, and α not equal to zero.

Obviously, well known classes R, S∗ and K are given by

R = L(1) = M(1) = {f ∈ A : Re f ′(z) > 0, z ∈ D},

K = L(0) =
{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ D

}
and

S∗ = M(0) =

{
f ∈ A : Re

(zf ′(z)

f(z)

)
> 0, z ∈ D

}
.

It is also well-known that a function f in R and K, respectively, is close-to-
convex and convex in D. Recall, that S∗ is the well known class of starlike
functions in D.

We now recall some definitions and notations of Toeplitz determinants. For
the history and applications of Toeplitz matrix and determinant to several areas
of pure and applied mathematics, one may refer to a survey article by Ye and
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Lim [19]. Also, see [9, 10]. Related Hankel determinants were also studied, in
particular, we refer to [2, 7, 8, 11]. We recall that Toeplitz symmetric matrices
have constant entries along the diagonal. In 2017, Thomas [4] initiated the
study of symmetric Toeplitz determinant Tq(n) given by

Tq(n) :=

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an · · · an+q

...
...

...
an+q−1 an+q · · · an

∣∣∣∣∣∣∣∣∣ .
for small values of q and n, where an’s are the complex coefficients of analytic
function f given by (1).

In this paper, we obtain sharp estimates of the Toeplitz determinant Tq(n)
for functions in the classes L(α) and M(α) for q = 2, 3 and n = 1, 2, 3. In
particular, we compute the bounds for the following determinants

T2(2) = |a23 − a22|, T2(3) = |a24 − a23|,

and

T3(1) = |1 + 2a22(a3 − 1)− a23|, T3(2) = |(a2 − a4)(a
2
2 − 2a32 + a2a4)|.

where the entries are the coefficients of the function f of the form (1) in class
L(α) or M(α). We have considered the case when a2 is real and it would be
nice to get bounds when a2 is not necessarily real.

2. The Class L(α)

The first theorem gives bound for T2(2) wherein the elements a2 and a3 of
the determinant matrix are the coefficients of the function f ∈ L(α).

Theorem 2.1. For f = z +
∑∞

n=2 anz
n ∈ L(α), with a2 real, we have

|T2(2)| = |a23 − a22| ≤
72− 84α+ 25α2

9(2− α)2
.

The class P of Caratheodory functions consists of analytic functions p de-
fined on D with p(0) = 1 and Re p(z) > 0 for all z ∈ D. The function p ∈ P
has Taylor series

p(z) = 1 +

∞∑
n=1

cnz
n.

We make use of the following lemma in order to compute the required bounds.

Lemma 2.2. [5] If the function given by

p(z) = 1 + c1z + c2z
2 + c3z

3 + · · ·(7)
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is in P, then,

2c2 = c21 + x(4− c21),

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)y,

for some x, y with c1 ≥ 0, |x| ≤ 1 and |y| ≤ 1.

Proof of Theorem 2.1. Since f ∈ L(α), there is an analytic function p(z) =
1 + c1z + c2z

2 + · · · ∈ P such that

(8) αf ′(z) + (1− α)
(
1 +

zf ′′(z)

f ′(z)

)
= p(z).

The Taylor series expansion of the function f gives

αf ′(z) + (1− α)
(
1 +

zf ′′(z)

f ′(z)

)
(9)

= 1 + 2a2z +
(
3a3(2− α)− 4a22(1− α)

)
z2(10)

+
(
8a32(1− α)− 18a2a3(1− α)

+ a4(12− 8α)
)
z3 + · · · .

Then using (8), (9) and the expansion for the function p, the coefficients a2
and a3 can be expressed as a function of the coefficients ci of p ∈ P :

a2 =
c1
2
,(11)

and

a3 =
c2 + c21(1− α)

3(2− α)
,(12)

Using the values of a2 and a3 from equations (11) and (12) and a little simpli-
fication yields

|a23 − a22| =
1

36(2− α)2
∣∣4c41(1− α)2 + 4c22 + 8c21c2(1− α)− 9c21(2− α)2

∣∣.
Substituting the value for c2 from Lemma 2.2 in the previous equation, we have

|a23 − a22| =
1

36(2− α)2
∣∣c41(3− 2α)2 + (4− c21)

2x2

+ c21
(
(4− c21)(6− 4α)x− 9(2− α)2

)∣∣.
Using triangle inequality, choosing c1 = c ∈ [0, 2] and replacing |x| by µ in the
above equation, we get

|a23 − a22| =
1

36(2− α)2

(
c4(3− 2α)2 + (4− c2)2µ2

+ 9c2(2− α)2 + c2(4− c2)(6− 4α)µ
)

=: F (c, µ).(13)
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We shall now maximize the function F (c, µ) for (c, µ) ∈ [0, 2]× [0, 1]. Differen-
tiating F (c, µ) partially with respect to µ, we get

∂F

∂µ
=

1

36(2− α)2

(
c2(4− c2)(6− 4α) + 2(4− c2)2µ

)
.

For 0 < µ < 1, and for any fixed c ∈ [0, 2], we observe that ∂F/∂µ > 0. Thus
F (c, µ) is an increasing function of µ, and for c ∈ [0, 2], F (c, µ) has a maximum
value at µ = 1. Thus, we have

max
µ∈[0,1]

F (c, µ) = F (c, 1) = G(c).(14)

Then equations (13) and (14) yield

G(c) =
1

36(2− α)2

(
c4(3− 2α)2 + (4− c2)2

+ 9c2(2− α)2 + c2(4− c2)(6− 4α)
)
.

Now, we need to find the maximum value of G(c) for c ∈ [0, 2]. Differentiating
G(c) with respect to c, we see that

G′(c) =
1

18(2− α)2

(
c
(
52− 52α+ 9α2 + 8c2(1− α)2

))
.

Clearly G′(c) > 0 for c ∈ [0, 2], and therefore

(15) T2(2) ≤ max
c∈[0,2]

G(c) = G(2) =
72− 84α+ 25α2

9(2− α)2
.

Hence equations (13), (14) and (15) proves the result.

Remark 2.3. 1. When α = 0, the class L(α) reduces to the class K
and thus |T2(2)| ≤ 2 for f ∈ K as in [4].

2. When α = 1, the class L(α) reduces to the class R and thus |T2(2)| ≤
13/9 for f ∈ R as in [4].

The next theorem gives bound for T3(1) wherein the elements a2 and a3 of
the determinant matrix are the coefficients of the function f ∈ L(α).

Theorem 2.4. For f ∈ L(α) with a2 real,

|T3(1)| = |1 + 2a22(a3 − 1)− a23| ≤
(12− 5α)(12− 7α)

9(2− α)2
.

Proof. Expanding the expression for T3(1), and using the values of a2 and
a3 from equations (11) and (12), it can be seen that

T3(1) =|1 + 2a22(a3 − 1)− a23|

=
1

18(2− α)2

∣∣∣18(2− α)2 + c41(4− α)(1− α)

− 2c22 + c21c2(2 + α)− 9c21(2− α)2
∣∣∣.
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Substituting the values for c2 from Lemma 2.2 in the above expression, we have
with M := 4− c21

|1 + 2a22(a3 − 1)− a23| =
1

36(2− α)2

∣∣∣36(2− α)2 + c41(3− α)(3− 2α)

−M2x2 − 18(2− α)2c21 + αMc21x
∣∣∣.

Using triangle inequality in the previous equation, choosing c1 = c ∈ [0, 2] and
replacing |x| by µ, we get

T3(1) ≤
1

36(2− α)2

(
36(2− α)2 + c4(3− α)(3− 2α)

+M2µ2 + 18(2− α)2c2 + αMµc2
)

=:F (c, µ).(16)

where now M := 4 − c21. We shall further maximize the function F (c, µ) for
(c, µ) ∈ [0, 2] × [0, 1]. Substituting the value of M and differentiating F (c, µ)
partially with respect to µ, we get

∂F

∂µ
=

1

36(2− α)2
(
αc2(4− c2) + 2(4− c2)2µ

)
.

For 0 < µ < 1, and for any fixed c ∈ [0, 2], we observe that ∂F/∂µ > 0. Thus
F (c, µ) is an increasing function of µ, and for c ∈ [0, 2], F (c, µ) has a maximum
value at µ = 1. Thus, we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).(17)

Then equations (16) and (17) yield

G(c) =
1

36(2− α)2

(
36(2− α)2 + c4(3− α)(3− 2α)

+ (4− c2)2 + 18(2− α)2c2 + (4− c2)αc2
)
.

Now, we need to maximize G(c) for c ∈ [0, 2]. Differentiating G(c) with respect
to c, we get

G′(c) =
1

9(2− k)2

(
c(2− α)(16− 9α) + 2c3(5− 5α+ α2)

)
.

Clearly G′(c) > 0 for c ∈ [0, 2], and therefore

max
0≤c≤2

G(c) = G(2) =
27(2− α)2 + 4(3− 2α)(3− α)

9(2− α)2
.(18)

Simplifying the equation (18) yields the required result.

Remark 2.5. 1. When α = 0, the class L(α) reduces to the class K
and thus |T3(1)| ≤ 4 as in [4].



Toeplitz Determinants 471

2. When α = 1, the class L(α) reduces to the class R and thus |T3(1)| ≤
35/9 as in [4].

3. The Class M(α)

Our first theorem in this section gives the bound for T2(2), wherein the
elements a2 and a3 of the determinant matrix are the coefficients of the function
f ∈ M(α).

Theorem 3.1. For f = z +
∑∞

n=2 anz
n ∈ M(α), where a2 is real, we have

|T2(2)| = |a23 − a22| ≤
4
(
(1 + α)2(2 + α)2 + (3 + α2)2

)
(1 + α)4(2 + α)2

.

Proof of Theorem 3.1. Since f ∈ M(α), there is an analytic function p(z) =
1 + c1z + c2z

2 + · · · ∈ P such that

(19) αf ′(z) + (1− α)
zf ′(z)

f(z)
= p(z).

The Taylor series expansion of the function f yields

αf ′(z) + (1− α)
zf ′(z)

f(z)

= 1 + a2(1 + α)z +
(
a3(2 + α)− a22(1− α)

)
z2(20)

+
(
a32(1− α)− 3a2a3(1− k) + a4(3 + α)

)
z3 + · · · .

Then using (19), (20) and the expansion for the function p from (7), the coef-
ficients a2 and a3 can be expressed as a function of the coefficients ci of p ∈ P :

a2 =
c1

1 + α
,(21)

and

a3 =
c21(1− α) + c2(1 + α)2

(1 + α)2(2 + α)
(22)

Using the values of a3 and a2, simplifying and collecting the coefficients of
various powers of ci’s, we get

|a23 − a22| =
1

(1 + α)4(2 + α)2
∣∣c41(1− α)2 + c22(1 + α)4

+ 2c21c2(1 + α)2(1− α)− c21(1 + α)2(2 + α)2
∣∣.

Substituting the value for c2 from Lemma 2.2 in the previous equation, we have

|a23 − a22| =
1

4(1 + α)4(2 + α)2
|c41(3 + α2)2 + (4− c21)

2(1 + α)4x2

+ 2c21(1 + α)2
(
(4− c21)(3 + α2)x− 2(2 + α)2

)
|.
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Using triangle inequality, choosing c1 = c ∈ [0, 2] and replacing |x| by µ in the
above inequality, we get

|a23 − a22| ≤
1

4(1 + α)4(2 + α)2

(
c4(3 + α2)2 + (4− c2)2(1 + α)4µ2

+ 2c2(1 + α)2
(
(4− c2)(3 + α2)µ+ 2(2 + α)2

))
=: F (c, µ).(23)

We shall now maximize the function F (c, µ) for (c, µ) ∈ [0, 2]× [0, 1]. Differen-
tiating F (c, µ) partially with respect to µ, we get

∂F

∂µ
=

1

4(1 + α)4(2 + α)2

(
2(1 + α)2(3 + α2)(4− c2)c2 + 2(1 + α)4(4− c2)2µ

)
.

For 0 < µ < 1, and for any fixed c ∈ [0, 2], we observe that ∂F/∂µ > 0. Thus
F (c, µ) is an increasing function of µ, and for c ∈ [0, 2], F (c, µ) has a maximum
value at µ = 1. Thus, we have

max
µ∈[0,1]

F (c, µ) = F (c, 1) = G(c).(24)

Then equations (23) and (24) yield

G(c) =
1

4(1 + α)4(2 + α)2

(
c4(3 + α2)2 + (4− c2)2(1 + α)4

+ 2c2(1 + α)2
(
(4− c2)(3 + α2) + 2(2 + α)2

))
.

Now, we need to find the maximum value of G(c) for c ∈ [0, 2]. Differentiating
G(c) with respect to c, we see that

G′(c) =
1

4(1 + α)4(2 + α)2

(
8c
(
(1 + α)2(8 + α2) + 2c2(1− α)2

))
.

Clearly G′(c) > 0 for c ∈ [0, 2], and therefore

(25) max
c∈[0,2]

G(c) = G(2) =
4
(
(1 + α)2(2 + α)2 + (3 + α2)2

)
(1 + α)4(2 + α)2

.

Thus, equations (23), (24) and (25) proves the result.

Remark 3.2. 1. When α = 0, the class M(α) reduces to the class S∗

and thus |T2(2)| ≤ 13 for f ∈ S∗ which is same as the bound obtained in
[4].

2. When α = 1, the class M(α) reduces to the class R and thus |T2(2)| ≤
13/9 for f ∈ R which is same as the bound in [4].

The next theorem gives bound for T3(1) wherein the elements a2 and a3 of
the determinant matrix are the coefficients of the function f ∈ M(α).
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Theorem 3.3. For f ∈ M(α), with a2 real,

|T3(1)| = |1 + 2a22(a3 − 1)− a23|

≤ 8(1 + α)(2 + α)2 + (1 + α)3(2 + α)2 + 4(5− α)(3 + α2)

(1 + α)3(2 + α)2
.

Proof. Expanding the expression for T3(1), and using the values of a2 and
a3 from equations (21) and (22) it can be seen that

T3(1) =|1 + 2a22(a3 − 1)− a23|

=
1

(1 + α)3(2 + α)2

∣∣∣(1 + α)3(2 + α)2 + 3c41(1− α)− c22(1 + α)3

+ 2c21c2(1 + α)(1 + 2α)− 2c21(1 + α)(2 + α)2
∣∣∣.

Substituting the value of c2 from Lemma 2.2, the above equation yields

T3(1) =
1

4(1 + α)3(2 + α)2

∣∣∣4(1 + α)3(2 + α)2 + (5− α)(3 + α2)c41

− (1 + α)3M2x2 − 8c21(1 + α)(2 + α)2 + 2c21(1 + α)(1 + 2α− α2)Mx
∣∣∣,

where M = 4− c21. Using triangle inequality in the previous equation, we get

T3(1) ≤
1

4(1 + α)3(2 + α)2

(
4(1 + α)3(2 + α)2 + c41(5− α)(3 + α2)

+ (1 + α)3M2|x|2 + 8c21(1 + α)(2 + α)2

+ 2c21(1 + α)(1 + 2α− α2)M |x|
)
.(26)

Choose c1 = c ∈ [0, 2] and replace |x| by µ in the previous inequality to get

T3(1) ≤
1

4(1 + α)3(2 + α)2

(
4(1 + α)3(2 + α)2 + c4(5− α)(3 + α2)

+ (1 + α)3M2µ2 + 8c2(1 + α)(2 + α)2 + 2c2(1 + α)(1 + 2α− α2)Mµ
)

=: F (c, µ).(27)

We now maximize the function F (c, µ) for (c, µ) ∈ [0, 2]× [0, 1]. Differentiating
F (c, µ) partially with respect to µ, we get

∂F

∂µ
=

1

2(1 + α)2(2 + α)2

(
(1 + α)2M2µ+ c2(1 + 2α− α2)M

)
.

For 0 < µ < 1, and for any fixed c ∈ [0, 2], we observe that ∂F/∂µ > 0 as
(1 + 2α − α2) > 0 for 0 < α ≤ 1. Thus F (c, µ) is an increasing function of µ,
and for c ∈ [0, 2], F (c, µ) has a maximum value at µ = 1. Thus, we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).(28)
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Now, using equations (27) and (28) we get

G(c) =
1

4(1 + α)3(2 + α)2

(
4(1 + α)3(2 + α)2 + c4(5− α)(3 + α2)(29)

+ (1 + α)3M2 + 8c2(1 + α)(2 + α)2

+ 2c2(1 + α)(1 + 2α− α2)M
)
.

On substituting M = 4− c2 in equation (29) and simplifying we obtain,

G(c) =
1

2(1 + α)3(2 + α)2

(
c4(7− 3α+ 3α2 + α3)

+ 4c2(1 + α)(4 + 4α− α2) + 2(1 + α)3(8 + 4α+ α2)
)
.

Now, we need to find the maximum value of G(c) for c ∈ [0, 2]. Differentiating
G(c) with respect to c, we get

G′(c) =
1

(1 + α)3(2 + α)2

(
4c(1 + α)(4 + 4α− α2) + 2c3(7− 3α+ 3α2 + α3)

)
.

Clearly G′(c) > 0 for c ∈ [0, 2], and therefore

max
0≤c≤2

G(c) = G(2) =
1

(1 + α)3(2 + α)2

(
2(1 + α)3(8 + 4α+ α2)

+ 8(1 + α)(4 + 4α− α2) + 8(7− 3α+ 3α2 + α3)
)
.

Simplifying the previous equation yields the required result.

Remark 3.4. 1. When α = 0, the class M(α) reduces to the class S∗

and thus |T3(1)| ≤ 24 as in [4].
2. When α = 1, the class M(α) reduces to the class R and thus |T3(1)| ≤

35/9 as in [4].

The next theorem gives bound for T3(2) wherein the elements a2, a3 and a4
of the determinant matrix are the coefficients of the function f ∈ M(α).

Theorem 3.5. For f ∈ M(α) with a2 real,

|T3(2)| = |(a2 − a4)(a
2
2 − 2a32 + a2a4)|

≤ 32(3 + α2)(7 + 10α+ 7α2 + α3)(9 + 5α+ 18α2 + 3α3 + α4)

(1 + α)7(2 + α)3(3 + α)2
.

Proof. Expanding the expression for T3(2), it can be seen that

T3(2) =|(a2 − a4)(a
2
2 − 2a32 + a2a4)|.

First, we shall obtain an upper bound for |a2 − a4|. Using equations (19),
(20) and the expansion for the function p from (7), the coefficient a4 can be
expressed as a function of the coefficients ci of p ∈ P :
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(30) a4 =
c31(1− α)(1− 4α) + 3c1c2(1− α)(1 + α)2 + c3(1 + α)3(2 + α)

(1 + α)3(2 + α)(3 + α)
.

Using the values of a2 and a4 from equations (21) and (30), we get

|a2 − a4| =
1

(1 + α)3(2 + α)(3 + α)

∣∣∣− c3(1 + α)3(2 + α)− c31(1− α)(1− 4α)

− 3c2c1(1 + α)2(1− α) + c1(1 + α)2(2 + α)(3 + α)
∣∣∣.

Substituting the values for c2 and c3 from Lemma 2.2 in the above equation,
we have with M := 4− c21 and Z = 1− x2,

|a2 − a4| =
1

4(1 + α)3(2 + α)(3 + α)

∣∣∣c31(−12 + 7α− 19α2 + α3 − α4)

+ c1(1 + α)2
(
4(2 + α)(3 + α)− 2(5 + α2)Mx

+ (1 + α)(2 + α)Mx2
)
− 2(1 + α)3(2 + α)MyZ

∣∣∣.
Simplifying the above expression for |a2−a4| by substituting back M := 4− c21
and Z := 1− x2, and using triangle inequality and also making use of the fact
that |y| ≤ 1, we get

|a2 − a4| ≤
1

4(1 + α)3(2 + α)(3 + α)

(
2(1 + α)3(2 + α)(4− c21)

+ 4c1(1 + α)2(2 + α)(3 + α) + c31(12− 7α+ 19α2 − α3 + α4)

+ 2c1(4− c21)(1 + α)2(5 + α2)|x|

+ (2− c1)(2 + c1)
2(1 + α)3(2 + α)|x|2

)
=:F (c1, |x|) = F (c, µ)(say).(31)

We shall further maximize the function F (c, µ) for (c, µ) ∈ [0, 2] × [0, 1]. Dif-
ferentiating F (c, µ) partially with respect to µ, we get

∂F

∂µ
=

1

2(1 + α)(2 + α)(3 + α)

(
c(4− c2)(5 + α2)

+ (2− c)(2 + c)2(1 + α)(2 + α)µ
)
.

For 0 < µ < 1, and for any fixed c ∈ [0, 2], we observe that ∂F/∂µ > 0. Thus
F (c, µ) is an increasing function of µ, and for c ∈ [0, 2], F (c, µ) has a maximum
value at µ = 1. Thus, we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).(32)
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Then equations (31) and (32) upon simplification yield

G(c) =
1

2(1 + α)3(2 + α)(3 + α)

(
4c(1 + α)2(9 + 4α+ 2α2)

− c3α(17 + α+ 5α2 + α3)
)
.

Now, we need to maximize G(c) for c ∈ [0, 2]. Differentiating G(c) with respect
to c, we get

G′(c) =
1

2(1 + α)3(2 + α)(3 + α)

(
4(1 + α)2(9 + 4α+ 2α2)

− 3c2α(17 + α+ 5α2 + α3)
)
.

Clearly G′(c) > 0 for c ∈ [0, 2], and therefore

|a2 − a4| ≤ max
0≤c≤2

G(c) = G(2)

=
2(1 + α)2(9 + 4α+ 2α2)− 6α(17 + α+ 5α2 + α3)

(1 + α)3(2 + α)(3 + α)
.(33)

We shall now obtain an upper bound for |a22 − 2a23 + a2a4|. Using the values of
a2, a3 and a4 from equations (21), (22) and (30), we get

a22 − 2a23 + a2a4 =
1

(1 + α)4(2 + α)2(3 + α)

(
c1c3(1 + α)3(2 + α)2

− 2c22(1 + α)4(3 + α) + c41(−4 + α+ α2 + 2α3)

+ c21(1 + α)2
(
(2 + α)2(3 + α) + c2(−6 + 5α+ α2)

))
.

Substituting the values of c2 and c3 from Lemma 2.2 in the above expression,
we have with M := 4− c21 and Z = 1− x2,

|a22 − 2a23 + a2a4| =
1

4(1 + α)4(2 + α)2(3 + α)

∣∣∣− 2(1 + α)4(3 + α)M2x2

− c41(30 + 20α+ 5α2 − 5α3 + 5α4 + α5)

+ c21(1 + α)2
(
4(2 + α)2(3 + α)− 2(8 + α+ 4α2 + α3)Mx

− (1 + α)(2 + α)2Mx2
)
+ 2c1(1 + α)3(2 + α)2MyZ

∣∣∣.



Toeplitz Determinants 477

Simplifying the above expression by using triangle inequality after substituting
M := 4− c21 and Z := 1− x2, and using the fact that |y| ≤ 1, we get

|a22 − 2a23 + a2a4| ≤
1

4(1 + α)4(2 + α)2(3 + α)

∣∣∣2(4− c21)
2(1 + α)4(3 + α)|x|2

+ 2c1(4− c21)(1 + α)3(2 + α)2(1− |x|2)
+ c21(1 + α)2

(
(4− c21)(1 + α)(2 + α)2|x|2

+ 2(4− c21)(8 + α+ 4α2 + α3)|x|
)
+ 4c21(1 + α)2(2 + α)2

(3 + α) + c41(30 + 20α+ 5α2 − 5α3 + 5α4 + α5)
∣∣∣

=:F (c, |x|) = F (c, µ)(say).(34)

We shall further maximize the function F (c, µ) in (34) for (c, µ) ∈ [0, 2]× [0, 1].
Differentiating F (c, µ) partially with respect to µ, we get

∂F

∂µ
=

1

4(1 + α)4(2 + α)2(3 + α)

(
4(4− c2)2(1 + α)4(3 + α)µ

− 4cµ(4− c2)(1 + α)3(2 + α)2 + c2(1 + α)2
(
2(4− c2)(8 + α+ 4α2 + α3)

+ 2(4− c2)(1 + α)(2 + α)2µ
))

.

For 0 < µ < 1, and for any fixed c ∈ [0, 2], we observe that ∂F/∂µ > 0. Thus
F (c, µ) is an increasing function of µ, and for c ∈ [0, 2], F (c, µ) has a maximum
value at µ = 1. Thus, we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).(35)

Then equations (34) and (35) on simplifying yield

G(c) =
1

(1 + α)4(2 + α)2(3 + α)

(
2c2(10− α)(1 + α)2

+ 8(1 + α)4(3 + α) + c4(1− α)(4 + 3α+ 2α2)
)
.

Now, we need to maximize G(c) for c ∈ [0, 2]. Differentiating G(c) with respect
to c, we get

G′(c) =
4c

(1 + α)4(2 + α)2(3 + α)

(
(10− α)(1 + α)2 + c2(1− α)(4 + 3α+ 2α2)

)
.

Clearly G′(c) > 0 for c ∈ [0, 2], and therefore

max
0≤c≤2

G(c) = G(2) =
8(3 + α2)(7 + 10α+ 7α2 + α3)

(1 + α)4(2 + α)2(3 + α)
.(36)

Finally, from equation (33) and (36), we have

|T3(2)| ≤
32(3 + α2)(7 + 10α+ 7α2 + α3)(9 + 5α+ 18α2 + 3α3 + α4)

(1 + α)7(2 + α)3(3 + α)2
.
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Remark 3.6. 1. When α = 0, the class M(α) reduces to the class S∗

and thus |T3(2)| ≤ 84 as in [4].
2. When α = 1, the class M(α) reduces to the class R and thus |T3(2)| ≤

25/12 as in [4].

The next theorem gives bound for T2(3) wherein the elements a3 and a4 of
the determinant matrix are the coefficients of the function f ∈ M(α).

Theorem 3.7. For f ∈ M(α), 0 ≤ α ≤ α0,

|T2(3)| = |a24 − a23|

≤ 4(1 + α)2(3 + α)2(3 + α2)2 + 4(12− 7α+ 19α2 − α3 + α4)2

(1 + α)6(2 + α)2(3 + α)2
.

whereas, for α0 < α ≤ 1, T2(3) = |a24−a23| ≤ G(c0), where 0 < c0 < 2 and G(c0)
is a very complex quantity. Here α0 is a root of G(c0)(1+α)6(2+α)2(3+α)2 =
4(1+α)2(3+α)2(3+α2)2+4(12−7α+19α2−α3+α4)2 and is equal to 0.359395.

Proof. Using the values of a3 and a4 from equations (22) and (30), we get

|a24 − a23| =
1

(1 + α)6(2 + α)2(3 + α)2

∣∣∣6c1c2c3(1 + α)5(1− α)(2 + α)

+ c61(1− α)2(1− 4α)2 + 2c31c3(1 + α)3(1− α)(2 + α)(1− 4α)

+ c21c2(1− α)(1 + α)4
(
9c2(1− α)− 2(3 + α)2

)
+ (1 + α)6

(
c23(2 + α)2 − c22(3 + α)2

)
+ c41(1− α2)2

(
6c2(1− 4α)− (3 + α)2

)∣∣∣.
Substituting the values for c2 and c3 from Lemma 2.2 in the above equation,
we have with M := 4− c21, Z = 1− x2 and (12− 7α+ 19α2 − α3 + α4) = N

|a24 − a23| =
1

16(1 + α)6(2 + α)2(3 + α)2

∣∣∣c61N2 − 2c41(1 + α)2
(
2(3 + α)2(3 + α2)2

− 2(5 + α2)NMx+ (1 + α)(2 + α)NMx2
)
+ c21(1 + α)4Mx(

− 8(3 + α)2(3 + α2) + 4(5 + α2)2Mx− 4(1 + α)(2 + α)(5 + α2)

Mx2 + (1 + α)2(2 + α)2Mx3
)
+ 4c31(1 + α)3(2 + α)NMyZ

− 4c1(1 + α)5(2 + α)M2x
(
− 2(5 + α2) + (1 + α)(2 + α)x

)
yZ

− 4(1 + α)6M2
(
(3 + α)2x2 − (2 + α)2y2Z2

)∣∣∣.
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Simplifying the above expression by using triangle inequality after substituting
M := 4− c21 and Z := 1− x2, and using the fact that |y| ≤ 1, we get

|a24 − a23| ≤
1

16(1 + α)6(2 + α)2(3 + α)2

(
c61N

2 + 2c41(1 + α)2
(
2(3 + α)2(3 + α2)2

+ 2(4− c21)(5 + α2)N |x|+ (4− c21)(1 + α)(2 + α)N |x|2
)

+ c21(4− c21)(1 + α)4|x|
(
8(3 + α)2(3 + α2) + 4(4− c21)(5 + α2)2|x|

+ 4(4− c21)(1 + α)(2 + α)(5 + α2)|x|2 + (4− c21)(1 + α)2(2 + α)2

|x|3
)
+ 4c31(4− c21)(1 + α)3(2 + α)N(1− |x|2)

+ 4c1(4− c21)
2(1 + α)5(2 + α)|x|

(
2(5 + α2) + (1 + α)(2 + α)|x|

)
(1− |x|2) + 4(4− c21)

2(1 + α)6
(
(3 + α)2|x|2 + (2 + α)2(1− |x|2)2

))
=:F (c1, |x|) = F (c, µ)(say).(37)

We shall further maximize the function F (c, µ) in (37) for (c, µ) ∈ [0, 2]× [0, 1].
Differentiating F (c, µ) partially with respect to µ, we get

∂F

∂µ
=

1

16(1 + α)4(2 + α)2(3 + α)2

(
− 8c3(1 + α)3(2 + α)MNµ+ 4c4(1 + α)2

MN
(
5 + α2 + (1 + α)(2 + α)µ

)
+ 4(1 + α)6M2

(
2(3 + α)2µ

+ 4(2 + α)2µ(1− µ2)
)
+ c

(
8(1 + α)5(2 + α)(5 + α2)M2

+ 8(1 + α)6(2 + α)2M2µ− 24(1 + α)5(2 + α)(5 + α2)M2µ2

− 16(1 + α)6(2 + α)2M2µ3
)
+ c2

(
8(1 + α)2(3 + α)2(3 + α2)

+ 8(1 + α)2(5 + α2)2Mµ+ 12(1 + α)3(2 + α)(5 + α2)Mµ2

+ 4(1 + α)4(2 + α)2Mµ3
))

.

For 0 < µ < 1, and for any fixed c ∈ [0, 2], we observe that ∂F/∂µ > 0. Thus
F (c, µ) is an increasing function of µ, and for c ∈ [0, 2], F (c, µ) has a maximum
value at µ = 1. Thus, we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).(38)

Then equations (37) and (38) yield

G(c) =
1

4(1 + α)2(2 + α)2(3 + α)2

(
2(1 + α)4(3 + α)2M2 − 6c(1 + α)3(2 + α)

(4 + α+ α2)M2 + c2
(
2(3 + α)2(3 + α2) + 3(4 + α+ α2)

(7 + 3α+ 2α2)M
)
− 2c3(1 + α)(2 + α)MN + c4(7 + 3α+ 2α2)MN

)
.
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Now, we need to maximize G(c) for c ∈ [0, 2]. Substituting M = 4 − c2 and
differentiating G(c) with respect to c, we get

G′(c) =
1

16(1 + k)6(2 + α)2(3 + α)2)

(
− 16c(4− c2)(1 + α)6(3 + α)2

+ c2(4− c2)(1 + α)4(−2c(1 + α)2(2 + α)2 − 8c(1 + α)(2 + α)(5 + α2)

− 8c(5 + α2)2)− 2c3(1 + α)4
(
(4− c2)(1 + α)2(2 + α)2

+ 8(3 + α)2(3 + α2) + 4(4− c2)(1 + α)(2 + α)(5 + α2)

+ 4(4− c2)(5 + α2)2
)
+ 2c(4− c2)(1 + α)4((4− c2)(1 + α)2(2 + α)2

+ 8(3 + α)2(3 + α2) + 4(4− c2)(1 + α)(2 + α)(5 + α2)

+ 4(4− c2)(5 + α2)2) + 6c5N2 + 2c4(1 + α)2(−2c(1 + α)(2 + α)N

− 4c(5 + α2)N) + 8c3(1 + α)2
(
2(3 + α)2(3 + α2)2

+ (4− c2)(1 + α)(2 + α)N + 2(4− c2)(5 + α2)N
))

.

Now for 0 ≤ c < c0, G
′(c) > 0 and therefore

max
0≤c≤2

G(c) = G(2)

=
64(1 + α)2(3 + α)2(3 + α2)2 + 64(12− 7α+ 19α2 − α3 + α4)2

16(1 + α)6(2 + α)2(3 + α)2
.(39)

whereas, for c0 < c ≤ 2, maximum of G(c) exists at c0 ∈ [0, 2], where c0 is a
root of G′(c) = 0 and we omit the details.

Remark 3.8. Since M(0) ≡ S∗, it follows that |T2(3)| ≤ 25 for starlike
functions and this was proved in [4].
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