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TUBULAR SURFACES WITH MODIFIED ORTHOGONAL

FRAME IN EUCLIDEAN 3-SPACE

Mahmut Akyigit, Kemal Eren∗, and Hidayet Huda Kosal

Abstract. In this study, tubular surfaces that play an important role
in technological designs in various branches are examined for the case

of the base curve is not satisfying the fundamental theorem of the dif-

ferential geometry. In order to give an alternative perspective to the
researches on tubular surfaces, the modified orthogonal frame is used in

this study. Firstly, the relationships between the Serret-Frenet frame and

the modified orthogonal frame are summarized. Then the definitions of
the tubular surfaces, some theorems, and results are given. Moreover, the

fundamental forms, the mean curvature, and the Gaussian curvature of

the tubular surface are calculated according to the modified orthogonal
frame. Finally, the properties of parameter curves of the tubular surface

with modified orthogonal frame are expressed and the tubular surface is

drawn according to the Frenet frame and the modified orthogonal frame.

1. Introduction

In 1850, Gaspard Monge described for the first time the canal surfaces
as the envelopes of a one-parameter family of the moving spheres S (s) with
a variable radius. Geometric and analytical properties of these surfaces and
their different perspectives in surface theory were studied [5, 23]. If the center
of a sphere S (s) is taken as α (s) then the curve α (s) is called the center
curve of the canal surface. For a canal surface, if the center curve α (s) is a
straight line, the channel surface is called a revolution surface. Moreover, if the
radius of the sphere-forming canal surface is constant, these canal surfaces are
called the tubular surface. Tubular surfaces, which play an important role in
computer drawings and material design, were studied by taking different frames
in Euclidean, Minkowski, and Galilean spaces, [6]-[22]. The Frenet frame has
not always been sufficient in solving some problems in studies related to curves
and surfaces. Therefore, different frames were needed to solve these problems.
While the Frenet frame is a frame on the regular curve, the Darboux frame
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is a nature-moving frame setting up on a regular surface. However, a new
alternative frame to the Frenet frame called the Bishop frame was defined by
L. R. Bishop in 1975. The main problem of the Frenet frame is that it cannot
be identified at the points where the curvature is zero. For example, let α be a
regular space curve. The Frenet frame is undefined when α′′ (s) = 0. Also, the
principal normal vector N (s) of the Frenet frame may have a non-removable
discontinuity at these points. This is why the Bishop frame is used. On the
other hand, Sasai described the modified orthogonal frame as an alternative to
the Frenet frame for the solution of the same problem [21]. This frame, which
was defined to compensate for the deficiency of the Frenet frame, has been
actively studying for the last few years, [2]-[19].

Our aim in this study to investigate the geometric properties of a tubular
surface with a modified orthogonal frame. Also, the characterizations of the
parameter curves of the tubular surface are examined. Thus, using the modified
orthogonal frame in the study makes it different from previous studies and
becomes a source for new researches.

2. Preliminaries

The mathematical measurements of the turning and twisting of a curve
in E3 have been given in [18]. First, let us consider unit speed curves. An
important aspect of the differential geometry of a curve is to use the Frenet
frame field {t, n, b}. The Frenet differentiation formula constituted with the
help of these vectors is given as follows:

t′ = κn, n′ = −κt+ τb, b′ = −τn.

Here, κ and τ are the curvature and the torsion of the curve α, respectively.
The fundamental theorem of the differential geometry of curves in E3 states

that a curve is completely determined by its curvature κ and torsion τ functions.
Specifically, suppose κ (s) and τ (s) are given functions defined on some interval
I, such that κ is positive and continuously differentiable and τ is continuous.
Then there exists a curve α (s) defined on I for which s is arc-length such that
κ and τ are, respectively, the curvature and torsion [8]. But, the Frenet frame
is insufficient at the points where the curvature of the curve α is zero. Because
at these points, the principal normal and binormal vectors of any the curve α
become discontinuous. Sasai, who was searching for a solution to this problem,
has defined the modified orthogonal frame as an alternative to Frenet frame
[21]. If the curvature κ (s) of the curve α doesn’t vanish, then we define an
orthogonal frame as follow:

T = dα
ds , N = dT

ds , B = T ∧N.

This frame becomes meaningless in the case of κ equals to zero. So, we
can construct a new alternative framework by assuming that κ is different
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from zero. Under this assumption, the relation between a modified orthogonal
frame {T,N,B} and a Frenet frame {t, n, b} is

T = t,N = κn,B = κb.

It is seen that the modified orthogonal frame holds the following equations
with the aid of the Frenet frame

⟨T,N⟩ = ⟨T,B⟩ = ⟨N,B⟩ = 0, ⟨T, T ⟩ = 1, ⟨N,N⟩ = ⟨B,B⟩ = κ2.

Due to these equations, the derivative equations of the modified orthogonal
frame {T,N,B} are given as

T ′ (s) = N (s) ,

N ′ (s) = −κ2T (s) + κ′

κ N (s) + τB (s) ,

B′ (s) = −τN (s) + κ′

κ B (s) .

Here “ ′ ” refers to the differential according to the parameter s and τ =
det(α′,α′′,α′′′)

κ2 is the torsion of the curve α. There are several different ways
to formulate a surface concept mathematically. One of these surfaces is given
with

φ (s, v) = β (s) + vδ (s) .

This surface generated with the help of a director curve and straight lines,
which called the rulings, are called ruled surfaces. Moreover, these straight
lines may be curves as well. The first fundamental form allows us to calculate
the angle, area, and length on the surface. However, the concept that expresses
the deviation of the surface from the tangent plane is the second fundamental
form. φs and φv are tangent vectors of a surface φ (s, v) and the coefficients of
these forms are

E = ⟨φs, φs⟩ ,F = ⟨φs, φv⟩ ,G = ⟨φv, φv⟩ ,
e = ⟨φss, U⟩ , f = ⟨φsv, U⟩ , g = ⟨φvv, U⟩ ,

respectively. Here, U = φs∧φv

∥φs∧φv∥ is the normal vector field of the surface.

Owing to the fact that the Gaussian curvature depends solely on the metric
which on the coefficients of the first fundamental form, it is invariant under
isometric deformation. The Gaussian curvature plays a special role in the
theory of surfaces, and many formulas are available for its computation, [20].
The mean curvature measures also the change resulting from the contraction
and expansion of the surface. The Gaussian curvature and the mean curvature
of the surface φ (s, v) are

K = eg−f2

EG−F 2 ,

H = 1
2
Eg−2Ff+Ge

EG−F 2 ,

respectively.
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3. Properties of Tubular Surfaces with Modified Orthogonal Frame

A canal surface is defined as the envelope of the moving sphere of variable
radius. If the radius is constant, this canal surface is called the tubular surface.
The parametric equation of the tubular surface is given as follows

φ (s, v) = α(s) + r (cos vN(s) + sin vB(s))

where v ∈ [0, 2π), r is the radius of the tubular surface and the curve α(s)
is the center curve of the tubular surface. Also, the vectors N and B are
perpendicular to the curve at the point α(s) of the curve α.

The derivatives according to parameters s and v of the tubular surface
φ (s, v) are, respectively,

(1)

φs =
(
1− rκ2 cos v

)
T + r

(
κ′

κ cos v − τ sin v
)
N + r

(
τ cos v + κ′

κ sin v
)
B,

φv = r (− sin vN + cos vB) .

From equation (1), the coefficients of the first fundamental form are found as

(2) E =
(
1− rκ2 cos v

)2
+ r2κ2

((
κ′

κ

)2

+ τ2

)
,F = r2κ2τ,G = r2κ2.

Moreover, considering equations of (1), the normal vector field of the tubular
surface φ (s, v) is obtained as

(3) U =

(
r κ′

κ

)
T − cos v

(
1− rκ2 cos v

)
N − sin v

(
1− rκ2 cos v

)
B

A
,

where A = κ2

√(
r
(−1

κ

)′)2
+ (1− rκ2 cos v)

2 ̸= 0 and, here, rκ2 cos v ̸= 1 or κ

is not a constant.

If the unit normal vector at any point of a surface φ (s, v) vanishes, i.e.
φs ∧ φv = 0 at any points, then these points are called the singular points of
the surface. So the following result is obvious.

Corollary 3.1. If rκ2 cos v = 1 and κ is non-zero constant then there is no
singular point on the tubular surface.

The second-order partial derivatives of tubular surface φ (s, v) are found by
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(4)
φss =

(
−3rκκ′ cos v + rκ2τ sin v

)
T

+
((

1− rκ2 cos v
)
+ r

((
κ′′

κ − τ2
)
cos v −

(
τ ′ + 2κ′

κ τ
)
sin v

))
N

+r
((

τ ′ + 2κ′

κ τ
)
cos v +

(
κ′′

κ − τ2
)
sin v

)
B,

φsv =
(
rκ2 sin v

)
T + r

(
−τ cos v − κ′

κ sin v
)
N + r

(
κ′

κ cos v − τ sin v
)
B,

φvv = −r (cos vN + sin vB) .

From the equations (3) and (4), the coefficients of the second fundamental form
are

(5)

e = 1
A

((
r2κ′

) (
−3κ′ cos v + κτ sin v

)
− κ2 cos v

(
1 − rκ2 cos v

)2
− rκ2

(
1 − rκ2 cos v

) (
κ′′
κ

− τ2
))

,

f = 1
A

(
r2κκ′ sin v + rκ2τ

(
1 − rκ2 cos v

))
,

g = 1
A

(
rκ2

(
1 − rκ2 cos v

))
.

The Gaussian and mean curvatures of the tubular surface φ (s, v) with the help
of equations (2) and (5) are obtained as

K =


(
1−rκ2 cos v

)


(
r2κ′

) (
−3κ′ cos v + κτ sin v

)
−κ2 cos v

(
1 − rκ2 cos v

)2

−rκ2
(
1 − rκ2 cos v

) (
κ′′
κ

− τ2
)

−r
(
rκ′ sin v+κτ

(
1−rκ2 cos v

))2


A2r

((
1−rκ2 cos v

)2
+(rκ′)2

) ,

H =

((
1−κ2r cos v

)2(
1−2rκ2 cos v

)
−r3κ′

(
3κ′ cos v+κτ sin v

)
+r2

((
κ′

)2−κ′′κ
)(

1−rκ2 cos v
))

2Ar

((
1−rκ2 cos v

)2
+(rκ′)2

) ,

respectively.

Let’s give some theorems about geometric interpretation of parametric curves
of the tubular surface φ (s, v).

Theorem 3.2.

i. The s−parameter curves of the tubular surface φ (s, v) are geodesic curves if
and only if

r = sin v

κ2 sin v cos v+(τ ′+2κ′
κ τ)

, κ2 sin v cos v +
(
τ ′ + 2κ′

κ τ
)
̸= 0.

ii. The v−parameter curves of the tubular surface φ (s, v) are geodesic curves if
and only if κ is constant.

Proof. In order for the parameter curves of the surface to be geodesic curves,
the acceleration vectors of these curves must be perpendicular to the surface
and therefore they are parallel to the normal vector of the surface.

i. From the equations (3) and (4), we get
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U ∧ φss =

1
A



(
1− rκ2 cos v

) (
−r
(
τ ′ + 2κ′

κ τ
)
+ sin v

(
1− rκ2 cos v

))
T

+

(
rκ sin v

(
1− rκ2 cos v

)
(3κ′ cos v − κτ sin v)

−r2 κ′

κ

((
τ ′ + 2κ′

κ τ
)
cos v +

(
κ′′

κ − τ2
)
sin v

) )
N

+

(
rκ cos v

(
1− rκ2 cos v

)
(−3κ′ cos v + κτ sin v)+

r κ′

κ

(
1− rκ2 cos v

)
+ r2 κ′

κ

((
κ′′

κ − τ2
)
cos v −

(
τ ′ + 2κ′

κ τ
)
sin v

) )
B


.

Since T,N and B are linearly independent, this means that U ∧φss = 0 if and
only if

(6)

(
1− rκ2 cos v

) (
−r
(
τ ′ + 2κ′

κ τ
)
+ sin v

(
1− rκ2 cos v

))
= 0,

−rκ sin v
(
1− rκ2 cos v

)
(−3κ′ cos v + κτ sin v)

−r2 κ′

κ

((
τ ′ + 2κ′

κ τ
)
cos v +

(
κ′′

κ − τ2
)
sin v

)
= 0,

rκ cos v
(
1− rκ2 cos v

)
(−3κ′ cos v + κτ sin v) + r κ′

κ

(
1− rκ2 cos v

)
+r2 κ′

κ

((
κ′′

κ − τ2
)
cos v −

(
τ ′ + 2κ′

κ τ
)
sin v

)
= 0.

When these last two equations are taken into consideration together and the
necessary operations are done, we have

r κ′

κ

(
−r
(
τ ′ + 2κ′

κ τ
)
+ sin v

(
1− rκ2 cos v

))
= 0.

So, from this equation and in the first equation of the equation (6), we get

r = sin v

κ2 sin v cos v+(τ ′+2κ′
κ τ)

, κ2 sin v cos v +
(
τ ′ + 2κ′

κ τ
)
̸= 0.

ii. From the equations (3) and (4), we have U∧φvv = 1
A

{(
−κ′

κ r2
)
(sin vN + cos vB)

}
.

Since N and B are linearly independent, this means that U ∧ φvv = 0 if and
only if κ is constant. As a result, the v−parameter curves are geodesic curves.

Theorem 3.3.
i. The s−parameter curves of the tubular surface φ (s, v) are asymptotic curves
if and only if

r =
−2κ4 cos v2+κ2

(
κ′′
κ −τ2

)
±κ

√
κ2(κ′′

κ −τ2)
2
+4κ′κτ sin v cos v−12κ′2 cos v2

2((κ4(κ′′
κ −τ2)−3κ′2) cos v+κκ′τ sin v−κ6 cos v3)

.

ii. The v−parameter curves of the tubular surface φ (s, v) are asymptotic curves
if and only if rκ2 cos v = 1 and κ is not constant.

Proof. If the parameter curves on the surface are asymptotic curves, the
normal curvature of the parameter curves must be zero everywhere. Therefore,
⟨φss, U⟩ = 0 and ⟨φvv, U⟩ = 0 must be provided for the s and v−parameter
curves.
i. From equation (5), we know
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e = ⟨φss, U⟩ =
1
A

((
r2κ′) (−3κ′ cos v + κτ sin v)− κ2 cos v

(
1− rκ2 cos v

)2 − rκ2
(
1− rκ2 cos v

) (
κ′′

κ
− τ2

))
.

s−parameter curves of the tubular surface φ (s, v) are asymptotic curves if and
only if e = 0. In this case, when necessary operations are taken in the equation
above, we get

r =
−2κ4 cos v2+κ2

(
κ′′
κ −τ2

)
±κ

√
κ2(κ′′

κ −τ2)
2
+4κ′κτ sin v cos v−12κ′2 cos v2

2((κ4(κ′′
κ −τ2)−3κ′2) cos v+κκ′τ sin v−κ6 cos v3)

.

ii. From equation (5), we know that

g = ⟨φvv, U⟩ = 1
A

(
rκ2

(
1− rκ2 cos v

))
.

If rκ2 cos v = 1, v−parameter curves of the tubular surface φ (s, v) are asymp-
totic curves. In that case, κ has not to be constant. But if κ is also constant,
the normal vector of the tubular surface does not vanish.

Theorem 3.4. The s and v−parameter curves of the tubular surface φ (s, v)
are lines of curvature if and only if τ = 0 and κ is constant.

Proof. If the parameter curves of a surface are lines of curvature, then F =
f = 0. In that case, from the equations (2) and (5), we get

r2κ2τ = 0

and

κκ′r2 sin v + κ2τr
(
1− κ2r cos v

)
= 0.

F = f = 0 if τ = 0 and, κ is constant or v = kπ, (k ∈ Z). So, the s and v−
parameter curves of the tubular surface φ (s, v) are lines of curvature.

Example 3.5. We choose the eight curve, which is also known as Gerono
lemniscate curve as the center curve [9]. In this example, the graphics of the
tubular surfaces with the base curve of eight curves by using both the Frenet
frame and the modified orthogonal frames have been given for comparison.
First, let us consider the curve α (s) given by the parametric equation

α (s) = (sin (s) , sin (s) cos (s) , s) .

The elements of the Frenet trihedron of the curve α (s) are obtained as
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t (s) =

( √
2 cos(s)√

4+cos(2s)+cos(4s)
,

√
2 cos(2s)√

4+cos(2s)+cos(4s)
,

√
2√

4+cos(2s)+cos(4s)

)
,

n (s) =


sin(s)(−1+4 cos(2s)+cos(4s))√

4+cos(2s)+cos(4s)
√

(27+24 cos(2s)+cos(4s)) sin (s)2
,

− sin(2s)(6+cos(2s))√
4+cos(2s)+cos(4s)

√
(27+24 cos(2s)+cos(4s)) sin (s)2

,

sin(2s)+2 sin(4s)√
4+cos(2s)+cos(4s)

√
(27+24 cos(2s)+cos(4s)) sin (s)2

 ,

b (s) =


2
√
2 sin(2s)√

(27+24 cos(2s)+cos(4s)) sin (s)2
,

−
√
2 sin(s)√

(27+24 cos(2s)+cos(4s)) sin (s)2
,

− 3 sin(s)+sin(3s)
√
2
√

(27+24 cos(2s)+cos(4s)) sin (s)2

 .

The curvature of the unit speed curve α (s) are found as

κ (s) =
2
√

(27+24 cos(2s)+cos(4s)) sin (s)2

(4+cos(2s)+cos(4s))3/2
.

Besides the curvature κ (s) =
2
√

(27+24 cos(2s)+cos(4s)) sin (s)2

(4+cos(2s)+cos(4s))3/2
is not differen-

tiable, the principal normal and binormal vectors are discontinuous at s = 0
since n+ ̸= n− and b+ ̸= b− for n+ = lim

s→0+
n (s), n− = lim

s→0−
n (s) and

b+ = lim
s→0+

b (s) , b− = lim
s→0−

b (s). Looking for a solution to this problem,

let us consider the modified orthogonal frame of Sasai, [21]. The elements of
the modified orthogonal frame of the unit speed curve α (s) are obtained as

T (s) =

( √
2 cos(s)√

4+cos(2s)+cos(4s)
,

√
2 cos(2s)√

4+cos(2s)+cos(4s)
,

√
2√

4+cos(2s)+cos(4s)

)
,

N (s) =
(

2 sin(s)(−1+4 cos(2s)+cos(4s))

(4+cos(2s)+cos(4s))2
, − sin(2s)(6+cos(2s))

(4+cos(2s)+cos(4s))2
, 2(sin(2s)+2 sin(4s))

(4+cos(2s)+cos(4s))2

)
,

B (s) =
(

4
√
2 sin(2s)

(4+cos(2s)+cos(4s))3/2
, −2

√
2 sin(s)

(4+cos(2s)+cos(4s))3/2
, −

√
2(3 sin(s)+sin(3s))

(4+cos(2s)+cos(4s))3/2

)
.

Now let’s draw the graphs of tubular surfaces whose equations are

ϕF (s, v) = α(s) + r (cos vn(s) + sin vb(s))

and

φM (s, v) = α(s) + r (cos vN(s) + sin vB(s))

according to the Frenet frame and the modified orthogonal frame, respectively.
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Figure 1. Tubular surface obtained by Frenet elements of
base curve

Figure 2. Tubular surface obtained by modified orthogonal
frame of base curve
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[10] M. K. Karacan and Y. Tunçer, Tubular surfaces of Weingarten types in Galilean and

Pseudo-Galilean, Bull. Math. Anal. Appl. 5(2) (2013), 87-100.

[11] M. K. Karacan and Y. Yaylı, On the geodesics of tubular surfaces in Minkowski 3-space,
Bull. Malays. Math. Sci. Soc. 1 (2008), 1-10.

[12] M. K. Karacan, D. W. Yoon and Y. Tunçer, Weingarten and linear Weingarten type
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