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THE PROJECTIVE MODULE P (2) OVER THE AFFINE

COORDINATE RING OF THE 2-SPHERE S2

Sanghee Kim

Abstract. It is known that the rank 2 stably free syzygy module P (2) is
not free. This algebraic fact was proved analytically, but this remarkable

fact still lacks of a simple algebraic proof. The main purpose of this paper

is to give a partially algebraic proof by making use of a theorem whose
proof is quite topological, and the further properties of the module will

be discussed.

1. Introduction

There is a famous result which states that the polynomial sections of the
tangent bundle of the (n−1)-sphere is free as a module over the coordinate ring
if and only if n = 1, 2, 4, or 8. All known proofs are topological or analytic,
the n = 3 case (see [9, Proposition 17.7]) being a special case of the known
Hairy Ball Theorem. There is a nice summary of this in [3, Example 19.17].
Using [2, Theorem 4.3.8], whose proof is quite topological and does most of
heavy lifting, we prove the n = 3 case.

Unless otherwise stated, every ring R is a commutative ring with identity,
and every module is a unitary R-module.

Each section is divided into two parts: the first half concerning modules
over rings, and the second half concerning the projective module P (2) over the
Affine coordinate ring of the 2-sphere S2.

In section 2, we define the rank of the finitely generated projective module
over a Noetherian ring. We deal with the Affine coordinate ring

R = R[X, Y, Z]/⟨X2 + Y 2 + Z2 − 1⟩
of the real 2-sphere S2 = {(a, b, c) ∈ R3 | a2 + b2 + c2 = 1}. We get a result
saying that the rank 2 stably free syzygy module P (2) over R does not contain
any two elements f and g of R3 having the property that ∥f × g∥ is a unit in
R (Thereorem 2.3). Using the result, we give a partially algebraic proof that
the module P (2) over R is not free (Corollary 2.5).
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In section 3, we find two sets of the generators of P (2) (Lemma 3.15 and
Theorem 3.16). We get a known result saying that the syzygy module is inde-
composable. The proof can be done by direct computation.

In section 4, we deal with maximal submodules of P (2), and then the Affine
coordinate ring

R(C) = C[X, Y, Z]/⟨X2 + Y 2 + Z2 − 1⟩

of the complex 2-sphere S2(C) = {(α, β, γ) ∈ C3 |α2+β2+γ2 = 1}. We find all
maximal ideals of the ring R(C) (Theorem 4.8) and get a result (Theorem 4.10).

2. Syzygy Modules

Let M be a finitely generated module over a ring R. Then M has a minimal
generating set Ω, that is, M is generated by Ω but by no proper subset of
Ω. Moreover, every minimal generating set for M has the same number of
elements.This number is denoted by µ(M).

Theorem 2.1. Let (R, m) be a Noetherian local ring. Then every finitely
generated projective module over R is free. More precisely, if P is a finitely
generated projective module over R, then P ∼= Rµ(P ).

Proof. See [8, Proposition 2.3.2], [6, Corolary 3.5] and [9, Theorem 10.4].

Let P be a finitely generated projective module over a Noetherian ring R,
and let p ∈ Spec(R). Then Pp is a finitely generated projective module over
a Noetherian ring Rp with unique maximal ideal pRp. By Theorem 2.1, Pp is
free over Rp, and

Pp
∼= R

µ(Pp)
p .

We define rk(P ) : Spec(R) → N by rk(P )(p) = µ(Pp). We write also rkp(P )
instead of rk(P )(p). rk(P ) is called the rank (map).

Throughout the remainder of this section, R will denote the Affine coordi-
nate ring

R[X, Y, Z]/⟨X2 + Y 2 + Z2 − 1⟩
of the real 2-sphere S2 = {(a, b, c) ∈ R3 | a2 + b2 + c2 = 1}.

Alternately, R may be thought of as the ring of polynomial functions defined
on S2. To see this, let f ∈ R. Then there exists a polynomial F ∈ R[X, Y, Z]
such that f = F+⟨X2+Y 2+Z2−1⟩. For p ∈ S2, we define f(p) := F (p) ∈ R.
Assume that there exists G ∈ R[X, Y, Z] such that f = G+⟨X2+Y 2+Z2−1⟩.
Then F −G ∈ ⟨X2 + Y 2 +Z2 − 1⟩, so F (p)−G(p) = 0, i.e., F (p) = G(p), for
all p ∈ S2. Thus the value of f(p) is well-defined.

It is known in [7, p.35] that the Affine coordinate ring R of the real 2-sphere
S2 is a unique factorization domain (or briefly UFD). In particular, it is known
in [9, Proposition 17.7] that the ring R is an integral domain.
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We will use lower case letters to denote images of elements from R[X, Y, Z]
in R. For example, write

x = X + ⟨X2 + Y 2 + Z2 − 1⟩,
y = Y + ⟨X2 + Y 2 + Z2 − 1⟩,
z = Z + ⟨X2 + Y 2 + Z2 − 1⟩.

(2.1)

Then R = R[x, y, z].
Define a map (x y z) : R3 → R by

(x y z)(f, g, h) = xf + yg + zh.

Since x2 + y2 + z2 = 1, the map (x y z) is surjective. In fact, for any f ∈ R,

(xf, yf, zf) ∈ R3

and

(x y z)(xf, xg, xh) = x(xf) + y(yf) + z(zf) = (x2 + y2 + z2)f = f.

It can be easily seen that (x y z) is an R-homomorphism. So, we can get an
exact sequence

0 // Ker(x y z) // R3
(x y z) // R // 0.(2.2)

Ker(x y z) is the solution space of the surjective R-homomorphism (x y z) and
it is usually denoted by P (2). This R-module is called a syzygy module (see [13,
p. 17]).

Lemma 2.2. Let f = (f1, f2, f3) and g = (g1, g2, g3) be in R3, and let

A =

 x y z
f1 f2 f3
g1 g2 g3

 .

If f and g are in P (2), then the following statements are true.

1. det(A) = ±∥f × g∥.
2. det(A) is a unit in R if and only if ∥f × g∥ is a unit in R.

Proof. (1)

AAt =

 1 0 0
0 f · f f · g
0 g · f g · g


so that

(det(A))2 = det(AAt)

= (f · f)(g · g)− (f · g)2

= ∥f × g∥2.
This means that det(A) = ±∥f × g∥.

(2) It is proved by (1).
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Theorem 2.3. P (2) does not contain any two elements f and g of R3 having
the property that ∥f × g∥ is a unit in R.

Proof. Suppose on the contrary that P (2) contains such two elements f =
(f1, f2, f3) and g = (g1, g2, g3), where f1, f2, f3, g1, g2, g3 ∈ R. Consider the
following matrix

A =

 x y z
f1 f2 f3
g1 g2 g3

 .

By Lemma 2.2, det(A) is a unit in R. There exists an element f in R such that
f det(A) = 1R. Consider the following matrix

Ã =

 x y z
ff1 ff2 ff3
g1 g2 g3

 .

Then Ã ∈ SL3(R). This contradicts to [2, Theorem 4.3.8].

Example 2.4. Notice that (−y, x, 0), (−z, 0, x) ∈ P (2). Consider the
following matrix

A =

 x y z
−y x 0
−z 0 x

 .

Then det(A) = x. Write f = (−y, x, 0) and g = (−z, 0, x). Then f × g =
(x2, xy, xz), so ∥f × g∥ = x, which is not a unit in R.

P (2) contains properly a projective R-submodule of rank 2. In fact, the
two elements f , g of P (2) in Example 2.4 are linearly independent over R, so
Rf ⊕Rg ⊆ P (2). Moreover, (0, −z, y) does not belong to Rf ⊕Rg, but it does
belong to P (2). Thus Rf ⊕Rg ⊊ P (2). {(x, y, z), f , g} can not generate R3.

Since R is R-projective, the sequence (2.2) splits. That is, there is an R-
homomorphism s : R → R3 such that (x y z) ◦ s = idR. Such an s is so called
a section of (x y z). In fact, if we define a map s : R → R3 by

s(f) = (fx, fy, fz),

where f ∈ R, then s satisfies (x y z) ◦ s = idR. Moreover, we can show that
P (2) ⊕ s(R) = R3 and s(R) ∼= R. Hence P (2) is projective, rank 2, stably free
over R. However, P (2) is not isomorphic to R2. We state this again and prove
this.

The topological proof can be seen in [7, p.34], and [5, Proposition 3.1.10].
The analytic proof using the Hairy Ball Theorem can be seen in [9, Proposition
17.7]. We provide a new proof of this. The proof is much easier than the
topological proof and the analytic proof.

Corollary 2.5. P (2) is not free over R.
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Algebraic Proof. We have already known that the exact sequence (2.2) splits,
so that there exists an R-homomorphism s : R → R3 such that (x y z)◦s = idR.
In fact, s : R → R3 is defined by s(f) = (fx, fy, fz), where f ∈ R. In partic-
ular, s(1) = (x, y, z).

Suppose that P (2) is R-free. Then P (2) has an R-free basis {f , g} over R,
where f , g ∈ R3, so that P (2) = Rf ⊕Rg. Thus,

R3 = s(R)⊕ P (2)

= Rs(1)⊕Rf ⊕Rg

= R(x, y, z)⊕Rf ⊕Rg.

There are elements aij (1 ≤ i, j ≤ 3) such that

(1, 0, 0) = a11(x, y, z) + a12f + a13g,

(0, 1, 0) = a21(x, y, z) + a22f + a23g,

(0, 0, 1) = a31(x, y, z) + a32f + a33g.

Now write f = (f1, f2, f3) and g = (g1, g2, g3), where f1, f2, f3, g1, g2, g3 ∈ R.
Then we get a11 a12 a13

a21 a22 a23
a31 a32 a33

 x y z
f1 f2 f3
g1 g2 g3

 =

 1 0 0
0 1 0
0 0 1

 .

Taking their determinants on both sides of this matrix equation, we can see
that the determinant of the second matrix is a unit in R. (This shows that
the unimodular matrix (x y z) is completed to a matrix whose determinant is
a unit in R.) By Lemma 2.2, ∥f × g∥ is a unit in R. This contradicts to
Theorem 2.3.

Question How can we prove [2, Theorem 4.3.8] or Theorem 2.3 alge-
braiclally? If we prove either one of these, then the n = 3 case has a simple
algebraic proof.

3. The Indecomposability of P (2)

In this section we deal with the indecomposability of P (2), and then find
the two sets of generators of P (2).

Let R be a ring. Assume that for two submodules M ′ and M ′′ of an R-
module M , M ′

m
∼= M ′′

m for all m ∈ Max(R). Then we can not say that M ′ ∼=
M ′′. For example, see [8, Example 1.2.1].

An element a in R is called a zero-divisor if there is a nonzero element b ∈ R
such that ab = 0. Let’s Z(R) denote the set of all zero-divisors of R. Then
notice that 0 ∈ Z(R). It is known that

Z(R) = ∪p∈Spec(R)
p⊆Z(R)

p.
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For example, let R = Z/⟨6⟩. Then
Z(R) = {0, 2, 3, 4} = {0, 2, 4} ∪ {0, 3} = ⟨2⟩ ∪ ⟨3⟩.

Proposition 3.1. Let R be a ring. Then the nilradical
√
0R of the ring R

is contained in Z(R).

Proof. There are two ways to prove this.
(Method I) Use the definitions of

√
0R and Z(R).

(Method II)
√
0R = ∩p∈Spec(R)p ⊆ ∪p∈Spec(R)

p⊆Z(R)

p = Z(R).

Corollary 3.2. Let R be a ring. Then every nonzero zero-divisor of R is
not nilpotent.

Let R be a ring, and S a multiplicatively closed subset of R. Define a map
α : R → RS by α(r) = r/1. Then α is an R-homomorphism. However, α is not
injective, in general. For example, let’s R = Z/⟨6⟩, as before. Define a map
α : R → R⟨3⟩ by α(r) = r/1. Then α is an R-homomorphism. However, it is
not injective, because 3 ̸= 0 in R, but 3/1 = 0/1 in R⟨3⟩ noting that 2 ∈ Z6\⟨3⟩
and 2 · 3 = 0 in R.

Lemma 3.3. Let R be a ring, and let P be a finitely generated projective
R-module. Let S = R\Z(R). Then the following two statements are true:

1. S is a saturated multiplicatively closed subset of R.
2. PS can be given an R-module structure.
3. If we define α : P → PS by α(x) = x/1, where x ∈ P , then α is an

R-monomorphism.

Proof. It is easy to prove that (1) and (2) are true.
(3) Say, P = ⟨x1, · · · , xn⟩. Define a map f : Rn → P by f(a1, · · · , an) =

a1x1+· · ·+anxn. Then f is an R-epimorphism. Consider the following diagram
:

P
g

~~
id
��

Rn

f
// P // 0 .

Since P is projective, there exists an R-homomorphism g : P → Rn such that
f ◦ g = id, so that g is an R-monomorphism. Define a map α : P → PS

by α(x) = x/1. Then α is an R-homomorphism. Assume that x/1 = 0 in
PS , where x ∈ P . Then there exists an element s ∈ S such that sx = 0 in
P . sg(x) = g(sx) = g(0) = 0. Let’s write g(x) = (b1, · · · , bn). Then for all
i ∈ {1, · · · , n}, sbi = 0. Since s ∈ S, we must have ai = 0. g(x) = (0, · · · , 0)
Since g is injective, we can get x = 0. This shows that α is injective.
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Corollary 3.4. Let R be a ring, and let S = R\Z(R). Then the statements
are true:

1. The ring RS can be given an R-module structure.
2. The mapping α : R → RS defined by α(r) = r/1 is an R-monomorphism.

Theorem 3.5. Let M be a finitely generated module over a ring R, let
P be a finitely generated projective R-module. Let S = R\Z(R). Then for
every R-monomorphism f : M → PS , there exists an element s ∈ S and an
R-monomorphism g : M → P such that the following diagram is commutative
:

M
g

}}
sf

��
0 // P

α
// PS .

Proof. Let x1, · · · , xn be generators of M . Then

⟨f(x1), · · · , f(xn)⟩ ⊆ PS ,

so that there exist elements p1, · · · , pn ∈ P , and s1, · · · , sn ∈ S such that

f(x1) = p1/s1, · · · , f(xn) = pn/sn.

Let s = s1 · · · sn. Then s ∈ S, and there exist q1, · · · , qn ∈ P such that

f(x1) = q1/s, · · · , f(xn) = qn/s.

Define a map g : M → P by g(x1) = q1, · · · , g(xn) = qn. Then g is an R-
homomorphism. Moreover, α ◦ g(xi) = g(xi)/1 = qi/1 = s(qi/s) = sf(xi) for
all i ∈ {1, · · · , n}, so that α◦g = sf . Assume now that g(x) = 0, where x ∈ M .
Then s(f(x)) = (sf)(x) = (α ◦ g)(x) = α(0) = 0. Write f(x) = p/t, where
p ∈ P and t ∈ S. Then sp/t = s(f(x)) = 0 in PS . There exists an element
u ∈ S such that u(sp) = 0. us ∈ S and (us)p = 0. Thus p/1 = 0 in PS . By
Lemma 3.3 (3), p = 0. Thus f(x) = 0. Since f is injective, x = 0. This shows
that g is injective.

Corollary 3.6. Let M be a finitely generated module over a ring R, and
let S = R\Z(R). Then for every R-monomorphism f : M → RS , there exists
an element s ∈ S and an R-monomorphism g : M → R such that the following
diagram is commutative :

M
g

}}
sf

��
0 // R

α
// RS .

We now turn our attention to a finitely generated projective module P over
a Noetherian ring R. If P has constant rank n, then we show that P can be
embedded in Rn. In particular, if P has constant rank 1, then it is known that
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P is R-isomorphic to a projective ideal of R. We proceed to prove this directly
using Corollary 3.6.

Lemma 3.7. Let p be a prime ideal of a ring R, let M be an R-module,
and let n be a positive integer such that Mp

∼= (Rp)
n(= Rp ⊕ · · · ⊕Rp). Then

there exists a submodule N of M generated by n elements such that Np = Mp.

Proof. Mp is a free Rp-module of rank n. Let x1/s2, · · · , xn/sn ∈ Mp be
an Rp-free basis for Mp. Let N = Rx1 + · · ·+Rxn. Then Np = Mp.

Corollary 3.8. Let R be a ring. Let M be an R-module and let n be a
positive integer such that Mp

∼= (Rp)
n for every p of Spec(R). Then M is

generated by n elements over R.

Proof. This can be shown if we use Lemma 3.7 and [10, Lemma 9.15].

Lemma 3.9. Let R be a ring, and let P, Q be R-modules. If P is a
projective R-module and f : Q → P is an R-epimorphism, then there exists
an R-homomorphism g : P → Q such that f ◦ g = idP , so that g is an R-
monomorphism.

Lemma 3.10. Let R be a ring, and let M be an R-module, and n be a
positive integer such thatMp

∼= (Rp)
n for every p of Spec(R). IfM is projective

over R, then it can be embedded in Rn.

Proof. By Corollary 3.8, M is generated by n elements over R, say by
x1, · · · , xn. Define a map f : Rn → M by f(r1, · · · , rn) = r1x1 + · · ·+ rnxn.
Then f is an R-epimorphism. Since M is projective, it follows from Lemma 3.9
that M can be embedded in Rn.

Theorem 3.11. Let R be a Noetherian ring. Let P be a finitely generated
projective R-module of constant rank n. Then P can be embedded in Rn.

Proof. Use Lemma 3.10 to prove this.

Corollary 3.12 ([8], Lemma 3.2.1). Let R be a Noetherian ring, and let
P be a finitely generated projective R-module of constant rank 1. Then the
following two statements are true.

1. P ∼= I for some projective ideal (also called invertible ideal) I of R.
2. If I is a principle ideal of R in (1), then P ∼= R.

Proof. (1) Use Theorem 3.11 to prove (1).
(2) Since rk P = 1, it follows from (1) that

(0 :R I)p = 0 :Rp
Ip = 0 :Rp

Pp = 0 :Rp
Rp = 0

for all p ∈ Spec(R). By the Local-Global property, 0 :R I = 0. Thus, since I is
principal, P ∼= I ∼= R/(0 :R I) ∼= R.



The Projective Module P (2) 411

Corollary 3.12 (1) can be proved alternatively by making use of Corollary 3.6
as follows.

Alternative proof of Corollary 3.12 (1). Let S = R\Z(R). Define a map
α : P → PS by α(x) = x/1. Then by Lemma 3.3(3) α is an R-monomorphism.
Moreover, note that PS

∼= P ⊗R RS . Then for every p ∈ Spec(R),

(PS)p ∼= (P ⊗R RS)p ∼= Pp ⊗Rp
(RS)p ∼= Rp ⊗Rp

(RS)p ∼= (RS)p,

because P is of rank one. Since PS is projective over RS , it follows from
Lemma 3.10 that there exists an RS-monomorphism β : PS → RS .

Consider the composite map

P
α // PS

β // RS .

Let f = β ◦ α. Then f is an R-monomorphism. By Corollary 3.6, there exists
an element s ∈ S and an R-monomorphism g : P → R such that the following
diagram is commutative :

P
g

~~
sf

��
0 // R

α
// RS

where α is the natural R-monomorphism. Let I = g(P ). Then I is an ideal of
R and P ∼= I.

Let R be a ring, I an ideal of R, and S = R\Z(R). Then S is a multiplica-
tively closed subset of R. Let (R :RS

I) denote the set {x ∈ RS | Ix ⊆ R}. If
I(R :RS

I) = R, then I is called an invertible ideal of R. Assume, in particular,
that R is an integral domain. Then Z(R) = {0}. Let Frac(R) denote the field
of fractions of R, as usual. Then Frac(R) = RR\{0}. Let I be an ideal of R.
Then I(R :Frac(R) I) = R if and only if I is an invertible ideal.

Let R = K[x1, x2, · · · ] be a polynomial ring with infinitely many inde-
terminates x1, x2, · · · over a field K. Then R is a unique factorization do-
main because if f is in R, then there exists a positive integer n such that
f ∈ K[x1, x2, · · · , xn], which is a unique factorization domain. However R is
not Noetherian, because the ideal ⟨x1, x2, · · · ⟩ is not finitely generated.

Corollary 3.13 ([7], Theorem 1.3, p.72). Let R be a Noetherian, unique
factorization domain and let P be a finitely generated projective R-module. If
P has constant rank one, then P ∼= R.

Proof. By Corollary 3.12 (1), P ∼= I for some ideal of R. I is a projective
ideal of R. Adopt the proof of [4, Theorem 6.8] to get I(R :RS

I) = R. From
this, we can show that I is principal. And then use Corollary 3.12 (2) to show
that P ∼= R.
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It is known (see [7, p.35]) that the Affine coordinate ring R of the real 2-
sphere S2 is a UFD. Using these facts, we can get Corollary 3.14 below, which
is known, for example, in [7, p.34].

Corollary 3.14. P (2) is indecomposable.

Proof. Use Corollary 3.13 and Corollary 2.5 to show this.

Let R be the Affine coordinate ring of the real 2-sphere. Then R is a Noe-
therian ring and R3 is a Noetherian R-module. Thus P (2) is finitely generated
over R. We are concerning the generators of P (2) to find two sets of its gener-
ators.

We have already known that the exact sequence (2.2) splits, and have shown
that R3 = P (2) ⊕ R(x, y, z). There exist u, v, w ∈ P (2) and a, b, c ∈ R such
that

(1, 0, 0) = u+ a(x, y, z),

(0, 1, 0) = v + b(x, y, z),

(0, 0, 1) = w + c(x, y, z).

Sending the elements on both sides of the equations, we can get a = x, b =
y, c = z. Thus

(1, 0, 0) = u+ x(x, y, z),

(0, 1, 0) = v + y(x, y, z),

(0, 0, 1) = w + z(x, y, z).

Lemma 3.15. Let R be an Affine coordinate ring of the real 2-sphere S2.
P (2) is generated by the following three elements

u = (1, 0, 0)− x(x, y, z),

v = (0, 1, 0)− y(x, y, z),

w = (0, 0, 1)− z(x, y, z).

Proof. It is easy to show that ⟨u, v, w⟩ ⊆ P (2). Conversely, let f be any
element of P (2). Write f = (f1, f2, f3), where f1, f2, f3 ∈ R. Then

f = (f1, f2, f3)

= f1(1, 0, 0) + f2(0, 1, 0) + f3(0, 0, 1)

= f1(u+ x(x, y, z)) + f2(v + y(x, y, z)) + f3(w + z(x, y, z))

= f1u+ f2v + f3w + (f1x+ f2y + f3z)(x, y, z)

= f1u+ f2v + f3w,

which belongs to ⟨u,v, w⟩. Thus P (2) ⊆ ⟨u, v, w⟩. This shows that

P (2) = ⟨u, v, w⟩.
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Since P (2) is indecomposable and it is generated by the three elements
u, v,w, the sum Ru + Rv + Rw is not direct, but the sum of any two of
Ru, Rv, Rw is direct. For example, the sum Ru+Rv is direct.

Theorem 3.16. Let R be an Affine coordinate ring of the real 2-sphere S2.
P (2) is also generated by the following three elements

f = (−y, x, 0),

g = (−z, 0, x),

h = (0, −z, y).

Proof. With the same notations as in Lemma 3.15, we have the following

u = −yf − zg,

v = xf − zh,

w = yh+ xg.

Thus by Lemma 3.15, P (2) = ⟨f , g, h⟩.

4. Maximal submodules of P (2)

In this section we deal with maximal submodules of P (2).

Lemma 4.1. A nonzero projective module has a maximal submodule.

Proof. See [1, Proposition 17.14].

Corollary 4.2. P (2) has a maximal submodule.

Of course, Corollary 4.2 can be proved alternatively as follows: By Lemma 3.15,
or by Theorem 3.16, P (2) is finitely generated. We now can use the Zorn lemma
to show that P (2) has a maximal submodule.

Theorem 4.3 ([12], Theorem, p.169). Let R be a ring. If P is a projective
R-module with unique maximal submodule, then P is indecomposable.

Proof. It is known in the paper [12, Propostion 2]: Let R be a ring and
M a right R-module with unique maximal submodule. Then either one of the
following is true.

1. M is indecomposable.
2. There exist submodules M1, M2 of M such that M = M1 ⊕M2, M1 has

unique maximal submodule, and M2 does not have maximal submodule.

Let P be a projective R-module with unique maximal submodule. Suppose that
P is not indecomposable. Then there exist submodules P1, P2 of P such that
P = P1 ⊕ P2, P1 has unique maximal submodule, P2 does not have maximal
submodule. Suppose that P2 is nonzero. Then by Lemma 4.1 P2 has a maximal
submodule. This contradiction shows that P is indecomposable.
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We can not use this result to prove that P (2) is indecomposable, because
we do not know whether P (2) has unique maximal submodule.

If two positive integers m, n are relatively prime, then the residue class ring
Z/mnZ of the ring Z of integers is decomposable because

Z/mnZ ∼= Z/mZ⊕ Z/nZ.
However the formal power series ring F [[x]], where F is a field, has unique
maximal ideal ⟨x⟩, so it is indecomposable by Theorem 4.3. A ring is called a
local ring if it is a Noetherian ring with unique maximal ideal. For example,
the formal power series ring F [[x]], where F is a field, is a local ring. The ring
Z of integers is a Noetherian ring, but it is not local, because it has infinitely
many maximal ideals ⟨2⟩, ⟨3⟩, ⟨5⟩, · · · .

Lemma 4.4. Let a, b, c ∈ R. With the same notations as in (2.1) we have
that following

R[x, y, z]/⟨x− a, y − b, z − c⟩
∼= R[X, Y, Z]/(⟨X − a, Y − b, Z − c⟩+ ⟨X2 + Y 2 + Z2 − 1⟩).

Proof. Use the third isomorphism theorem for rings to prove this.

Lemma 4.5. Let (a, b, c) ∈ S2. Then ⟨X2 + Y 2 + Z2 − 1⟩ ⊆ ⟨X − a, Y −
b, Z − c⟩ in the ring R[X, Y, Z] of polynomials with coefficients in R in inde-
terminates X, Y, Z.

Lemma 4.6. [10, Exercise 3.15] Let F be a field and let a1, · · · , an ∈ F .
Then the ideal

⟨X1 − a1, · · · , Xn − an⟩
of the ring F [X1, · · · , Xn] (of polynomials with coefficients in F in indetermi-
nates X1, · · · , Xn) is maximal.

Theorem 4.7. If R is the Affine coordinate ring of the real 2-sphere S2,
then for every (a, b, c) ∈ S2, ⟨x− a, y − b, z − c⟩ ∈ Max(R).

Proof. We can use Lemma 4.4 - Lemma 4.6 to prove this result.

• Any maximal ideal in the polynomial ring K[X1, · · · , Xn] over a field K
is generated by n elements (see [6, Exercise 3.1] and [8, Exercise 6.1.2]).

• (Weak Nullstellensatz) If K is an algebraically closed field, then an ideal
M is maximal in K[X1, · · · , Xn] if and only if there exit a1, · · · , an ∈ K such
that M = ⟨X1 − a1, · · · , Xn − an⟩ (see [6, Corollary 3.3.6] and [10, Theorem
14.6]).

• The complex number field C is algebraically closed, so an ideal M is
maximal in C[X, Y, Z] if and only if there exit α, β, γ ∈ C such that M =
⟨X − α, Y − β, Z − γ⟩.

Let’s denote x, y, z like in (2.1). Then

C[x, y, z] = C[X, Y, Z]/⟨X2 + Y 2 + Z2 − 1⟩.
Let Max(R) denote the set of all maximal ideals of a ring R.
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Theorem 4.8. Let S2(C) = {(α, β, γ) ∈ C3 |α2 + β2 + γ2 = 1}. Then
Max(C[x, y, z]) = {⟨x− α, y − β, z − γ⟩ | (α, β, γ) ∈ S2(C)}.

Proof. We can adopt the proof of Lemma 4.4 - Lemma 4.6 to show

{⟨x− α, y − β, z − γ⟩ | (α, β, γ) ∈ S2(C)} ⊆ Max(C[x, y, z]).

Conversely, let m ∈ Max(C[x, y, z]). Then there exists an ideal M in
C[X, Y, Z] with ⟨X2+Y 2+Z2−1⟩ ⊆ M such that M/⟨X2+Y 2+Z2−1⟩ = m.
Moreover, by the third isomorphism theorem for rings, M is a maximal ideal
of C]X, Y, Z]. By the Weak Nullstellensatz, there exist α, β, γ ∈ C such that
M = ⟨X−α, Y −β, Z−γ⟩. SinceX2+Y 2+Z2−1 ∈ M = ⟨X−α, Y −β, Z−γ⟩,
we can see that α2 + β2 + γ2 − 1 = 0, so that (α, β, γ) ∈ S2(C) and m =
⟨x− α, y − β, z − γ⟩.

Let R be a ring, and let M be an R-module. Soc(M) is defined to be the
sum of all simple R-submodules of M .

Lemma 4.9. Let S2(C) = {(α, β, γ) ∈ C3 |α2 + β2 + γ2 = 1}, and let

R(C) = C[X, Y, Z]/⟨X2 + Y 2 + Z2 − 1⟩,
which is called the Affine coordinate ring of the complex 2-sphere S2(C). If M
is a simple R(C)-module, then as R(C)-modules,

Soc(M) ∼= R(C)/⟨x− α, y − β, z − γ⟩
for some (α, β, γ) ∈ S2(C).

Theorem 4.10. Let R(C) be the Affine coordinate ring of the complex 2-
sphere S2(C). Let L be a maximal R(C)-submodule of P (2). Then the following
are true.

1. P (2)/L is R(C)-isomorphic to R/⟨x−α, y−β, z−γ⟩ for some (α, β, γ) ∈
S2(C).

2. The injective envelope E(P (2)/L) of the R(C)-module P (2)/L is an in-
decomposable injective R(C)-module.

Proof. See [11, Theorem 2.32 Corollary].
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by David Mumford, Birkhäuser Boston, Inc., Boston, MA, Translated from the German

by Michael Ackerman, 1985.

[7] T. Y. Lam, Serre’s problem on projective modules, Springer Monographs in Mathemat-
ics, Springer-Verlag, Berlin, 2006.

[8] Satya Mandal, Projective modules and complete intersections, Lecture Notes in Mathe-

matics, vol. 1672, Springer-Verlag, Berlin, 1997.
[9] Donald S. Passman, A course in ring theory, The Wadsworth & Brooks/Cole Mathe-

matics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove,

CA, 1991.
[10] R. Y. Sharp, Steps in commutative algebra, London Mathematical Society Student Texts,

vol. 19, Cambridge University Press, Cambridge, 1990.
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