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INVARIANT CONVERGENCE IN FUZZY NORMED SPACES

Şeyma Yalvaç∗ and Erdinç Dündar

Abstract. In this study, we defined the notions of invariant convergence

and invariant Cauchy sequences in fuzzy normed spaces. Also, we inves-
tigated some properties of invariant convergence and relations between
invariant convergence and invariant Cauchy sequences in fuzzy normed
spaces.

1. Introduction and Background

Banach [2] defined the generalized limit as an application of Hahn-Banach
theorem on the set of all bounded real valued sequences. It is also known
as Banach limit. Later, Lorentz [18] offered that if all Banach limits of a
given bounded sequence are equal, it is called almost convergent. In further
studies [6, 24], invariant mean and invariant convergence are given as a more
general case of Banach limit and almost convergence. Also, several authors
including Schaefer [27], Mursaleen and Edely [21], Mursaleen [22, 23], Savaş
[25,26] studied on invariant convergent sequences.

The idea of fuzzy set was initially introduced by Zadeh [30] to deal with im-
precise phenomena as an alternative to classical set theory. After that, several
classical concepts were reconstructed. Fuzzy topological spaces [3, 19], fuzzy
metric [12, 15, 17], fuzzy norm [1, 4, 11, 16] are just some of the examples. Fel-
bin’s fuzzy norm [11], which is associated with Kaleva and Seikkala [15] type
metric space by assigning a non-negative fuzzy real number to each element
of a linear space, forms the basis of this study. Das and Das [5] studied fuzzy
topology generated by fuzzy norm. Diamond and Kloeden [8] investigated the
metric spaces of fuzzy sets-theory and applications. Fang and Huang [10] stud-
ied on the level convergence of a sequence of fuzzy numbers. Also some other
authors [9,13,14] studied the notions of fuzzy numbers and fuzzy normed space.

Now, we recall the basic notions and some important definitions used in our
paper (See [1, 4, 6, 7, 9, 11,13,16,18,20–24,27–30]).

A fuzzy number is a fuzzy set provided that
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(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1;
(ii) u is fuzzy convex, i.e., u(λx+ (1− λ)y) ≥ min{u(x), u(y)} for x, y ∈ R

and 0 ≤ λ ≤ 1;
(iii) u is upper semi-continuous;
(iv) cl{x ∈ R : u(x) > 0} is a compact set.
Let L(R) be the set of all fuzzy number. R can be embedded in L(R) since

each r ∈ R can be considered a fuzzy real number r̃ defined by

∼
r(t) =

{
1, t = r,

0, t ̸= r.

For u ∈ L(R), the α-level set of u is defined by

[u]α =

{
{x ∈ R : u(x) ≥ α}, if α ∈ (0, 1]
cl{x ∈ R : u(x) > α}, if α = 0.

The α-level set of a fuzzy number denoted by [u]α = [u−
α , u

+
α ] is a non-empty,

bounded and closed interval for each α ∈ [0, 1] where u−
α = −∞ and u+

α = ∞
are admissible.

If u ∈ L(R) and u(x) = 0 for x < 0, then u is called a non-negative fuzzy
number. Let L∗(R) denote the set of all non-negative fuzzy number. It is easy
to see 0̃ ∈ L∗(R).

A partial ordering ≼ in L(R) is defined by for u, v ∈ L(R),

u ≼ v iff u−
α ≤ v−α and u+

α ≤ v+α for all α ∈ [0, 1].

Arithmetic equations addition, multiplication and multiplication with a
scaler on L(R) are defined by

(i) (u⊕ v) (t) = sups∈R{u (s) ∧ v (t− s)}, t ∈ R
(ii) (u⊙ v) (t) = sups∈Rs ̸=0{u (s) ∧ v (t/s)}, t ∈ R
(iii) For k ∈ R+, ku is defined as ku (t) = u (t/k) and 0u (t) = 0̃, t ∈ R.
Let u, v ∈ L(R) and [u]α = [u−

α , u
+
α ], [u]α = [u−

α , u
+
α ]. Arithmetic equations

in terms of α-level sets are defined by
(i) [u⊕ v]α = [u−

α + v−α , u
+
α + v+α ],

(ii) [u⊙ v]α = [u−
α .v

−
α , u

+
α .v

+
α ], u, v ∈ L∗(R),

(iii) [ku]α = k[u]α =

{
[ku−

α , ku
+
α ], k ≥ 0,

[ku+
α , ku

−
α ], k < 0.

For u, v ∈ L(R), the supremum metric on L(R) is defined by

D (u, v) = sup
0≤α≤1

max{
∣∣u−

α − v−α
∣∣ , ∣∣u+

α − v+α
∣∣}.

One can see that

D
(
u, 0̃

)
= sup

0≤α≤1
max{

∣∣u−
α

∣∣ , ∣∣u+
α

∣∣} = max{
∣∣u−

0

∣∣ , ∣∣u+
0

∣∣}.
Obviously, D

(
u, 0̃

)
= u+

α when u ∈ L∗(R).
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A sequence (un) in L(R) is called convergent to u ∈ L(R) denoted by D −
lim
n→∞

un = u if limn→∞ D(un, u) = 0, i.e., for all given ε > 0 there exists a

positive integer N = N(ε) ∈ R such that D (un, u) < ε, for n > N
Let X be a vector space over R, ∥.∥ : X → L∗ (R) and the mappings

L,R : [0, 1] × [0, 1] → [0, 1] be symmetric, nondecreasing in both arguments
and satisfy L (0, 0) = 0 and R(1, 1) = 1.

The quadruple (X, ∥.∥ , L,R) is called fuzzy normed linear space (FNS) and
∥.∥ is a fuzzy norm if the following axioms are satisfied

(i) ∥x∥ = 0̃ iff x = θ,
(ii) ∥rx∥ = |r| ⊙ ∥x∥ for x ∈ X, r ∈ R,
(iii) For all x, y ∈ X
(a) ∥x+ y∥ (s+ t) ≥ L (∥x∥ (s) , ∥y∥ (t)) ,

whenever s ≤ ∥x∥−1 , t ≤ ∥y∥−1 and s+ t ≤ ∥x+ y∥−1 ,
(b) ∥x+ y∥ (s+ t) ≤ R (∥x∥ (s) , ∥y∥ (t)) ,

whenever s ≥ ∥x∥−1 , t ≥ ∥y∥−1 and s+ t ≥ ∥x+ y∥−1 .
When L = min and R = max are taken in above (iii), triangle inequalities

become

∥x+ y∥−α ≤ ∥x∥−α + ∥y∥−α and ∥x+ y∥+α ≤ ∥x∥+α + ∥y∥+α ,

for all α ∈ (0, 1] and x, y ∈ X. Since they fulfil the other conditions of norm,
∥x∥−α and ∥x∥+α can be seen as ordinary norms on X.

Example 1.1. Let (X, ∥.∥C) be an ordinary normed linear space. Then, a
fuzzy norm ∥.∥ on X can be obtained

∥x∥ (t) =


0, if 0 ≤ t ≤ a ∥x∥C or t ≥ b ∥x∥C ,

t
(1−a)∥x∥C

− a
1−a , if a ∥x∥C ≤ t ≤ ∥x∥C ,

−t
(b−1)∥x∥C

+ b
b−1 , if ∥x∥C ≤ t ≤ b ∥x∥C ,

where ∥x∥C is the ordinary norm of x ( ̸= θ) , 0 < a < 1 and 1 < b < ∞. For

x = θ, define ∥x∥ = 0̃. Hence (X, ∥.∥) is a fuzzy normed linear space.

Throughout paper, let (X, ∥.∥) be an fuzzy normed linear space (FNS).
Let us consider the topological structure of an FNS (X, ∥.∥). For any ε >

0, α ∈ [0, 1] and x ∈ X, the (ε, α)− neighborhood of x is the set

Nx (ε, α) := {y ∈ X : ∥x− y∥+α < ε}.

A sequence (xn)
∞
n=1 in X is convergent to x ∈ X with respect to the fuzzy

norm on X and we denote by xn
FN→ x, provided that

(D)− lim
n→∞

∥xn − x∥ = 0̃,

i.e., for every ε > 0 there is an N (ε) ∈ N such that

D(∥xn − x∥ , 0̃) < ε,
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for all n ≥ N(ε). This means that for every ε > 0 there is an N (ε) ∈ N such
that for all n ≥ N(ε),

sup
α∈[0,1]

∥xn − x∥+α = ∥xn − x∥+0 < ε.

In terms of neighborhoods, for all ε > 0 there exists N (ε) ∈ N such that
xn ∈ Nx (ε, 0) for n ≥ N(ε).

Let σ be a mapping of the positive integers into itself. A continuous linear
functional ϕ on ℓ∞, the space of real bounded sequences, is said to be an
invariant mean or a σ mean if and only if

(i) ϕ(x) ≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,
(ii) ϕ(e) = 1, where e = (1, 1, 1...),
(iii) ϕ(xσ(n)) = ϕ(x) for all x ∈ ℓ∞.
The mappings σ are assumed to be one-to-one and satisfied the condition

σm(n) ̸= n for all positive integers n and m, where σm(n) denotes the m th
iterate of the mapping σ at n. Invariant mean, ϕ, is a extension of the limit func-
tional on c, the space of convergent sequences, in the sense that ϕ(x) = limx
for all x ∈ c. The sequence is called invariant convergent when its invariant
means are equal. In case σ(n) = n + 1, the σ mean is often called a Banach
limit and invariant convergent is almost convergent.

A bounded sequence (xn) is σ-convergent to the number L if and only if
lim

m→∞
tmn = L uniformly in m, where

tmn =
xn + xσ(n) + xσ2(n) + · · ·+ xσm(n)

m+ 1
.

2. Main Results

Definition 2.1. A sequence x = (xn) inX is said to be invariant convergent

to L ∈ X with respect to fuzzy norm and denoted by xn
σ−FN−→ L if

(D)− lim
m→∞

∥tmn − L∥ =
∼
0

uniformly in n, where

tmn =
xn + xσ(n) + xσ2(n) + · · ·+ xσm(n)

m+ 1
.

Namely, for given ε > 0 there exists a m0 = m0(ε) ∈ N such that for all m > m0

and every n ∈ N,

D(∥tmn − L∥,
∼
0) = sup

α∈[0,1]

∥tmn − L∥+α = ∥tmn − L∥+0 < ε.

In terms of neighborhood, for given ε > 0 there exists a m0 = m0(ε) ∈ N such
that for all m > m0 and every n ∈ N,

tmn ∈ NL(ε, 0).
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Theorem 2.2. Let x = (xn) be a sequence in X. If x is invariant conver-
gent, then it’s limit is unique with respect to fuzzy norm.

Proof. Let xn
σ−FN−→ L1 and xn

σ−FN−→ L2, where L1 ̸= L2. Then, for every
ε > 0 there exists a m1 = m1(ε) ∈ N such that for all m > m1,

D(∥tmn − L1∥,
∼
0) = sup

α∈[0,1]

∥tmn − L1∥+α = ∥tmn − L1∥+0 <
ε

2

and also, for every ε > 0 there exists a m2 = m2(ε) ∈ N such that for all
m > m2 and every n ∈ N,

D(∥tmn − L2∥,
∼
0) = sup

α∈[0,1]

∥tmn − L2∥+α = ∥tmn − L2∥+0 <
ε

2
.

Therefore, let m0 = max{m1,m2} such that for all m > m0 and every n ∈ N,

∥L1 − L2∥+0 = ∥L1 − tmn + tmn − L2∥+0

≤ ∥L1 − tmn∥+0 + ∥tmn − L2∥+0

<
ε

2
+

ε

2
= ε

and so, we have L1 = L2.

Theorem 2.3. Let x = (xn) and y = (yn) be two sequences in X. If

xn
σ−FN−→ L1 and yn

σ−FN−→ L2,

then

xn + yn
σ−FN−→ L1 + L2.

Proof. Assume that

xn
σ−FN−→ L1 and yn

σ−FN−→ L2.

Then, for every ε > 0 there exists a m1 = m1(ε) ∈ N such that for all m > m1,

D(∥tmn − L1∥,
∼
0) = sup

α∈[0,1]

∥tmn − L1∥+α = ∥tmn − L1∥+0 <
ε

2

and also, for every ε > 0 there exists a m2 = m2(ε) ∈ N such that for all
m > m2,

D(∥kmn − L2∥,
∼
0) = sup

α∈[0,1]

∥kmn − L2∥+α = ∥kmn − L2∥+0 <
ε

2
,
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for every n ∈ N. Therefore, let m0 = max{m1,m2} such that for all m > m0

and every n ∈ N,
∥ (tmn + kmn)− (L1 + L2) ∥+0 = ∥tmn − L1 + kmn − L2∥+0

≤ ∥tmn − L1∥+0 + ∥kmn − L2∥+0

<
ε

2
+

ε

2
= ε

and so, we have

xn + yn
σ−FN−→ L1 + L2.

Theorem 2.4. Let x = (xn) be a sequence in X and c be a scalar. If

xn
σ−FN−→ L, then c xn

σ−FN−→ cL.

Proof. Assume that xn
σ−FN−→ L and c be a scalar. The proof is clear for

c = 0. Let c ̸= 0. Then, for every ε > 0 there exists a m0 = m0(ε) ∈ N such
that for all m > m0 and every n ∈ N,

∥tmn − L∥+0 <
ε

|c|
.

Therefore, we have

∥c tmn − cL∥+0 = |c| ∥tmn − L∥+0
< |c| ε

|c|
= ε

and so,

c xn
σ−FN−→ cL.

Definition 2.5. A sequence x = (xn) in X is said to be invariant Cauchy
sequence with respect to fuzzy norm if for every ε ≥ 0 there exists a m0 =
m0(ε) ∈ N such that for all m, p > m0,

D(∥tmk − tpl∥,
∼
0) = sup

α∈[0,1]

∥tmk − tpl∥+α = ∥tmk − tpl∥+0 < ε,(1)

for every k, l ∈ N.

Theorem 2.6. Let x = (xn) be a sequence in X. x is invariant convergent
if and only if it is invariant Cauchy sequence with respect to fuzzy norm.

Proof. Assume x be invariant convergent to L in fuzzy normed space X.
That is, for every ε > 0 there exists a m0 = m0(ε) ∈ N such that for all
m > m0

D(∥tmk − L∥,
∼
0) = sup

α∈[0,1]

∥tmk − L∥+α = ∥tmk − L∥+0 <
ε

2
,
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for every k ∈ N. Clearly for every k, l ∈ N, the inequality

∥tmk − tpl∥+0 ≤ ∥tmk − L∥+0 + ∥tpl − L∥+0
<

ε

2
+

ε

2
= ε

is satisfied whenever m, p > m0.
Conversely, let x = (xn) be invariant Cauchy sequence with respect to

fuzzy norm, i.e., for every ε > 0 there exists a m0 = m0(ε) ∈ N such that for
all m, p > m0

D(∥tmk − tpl∥,
∼
0) = sup

α∈[0,1]

∥tmk − tpl∥+α = ∥tmk − tpl∥+0 <
ε

2
,

for every k, l ∈ N. Fix n, say n = n0. So (1) implies taking k = l = n0 that
(tmn0

)∞m=0 is a Cauchy sequence and so has a limit, say L. For every ε > 0,
there exists a m1 = m1(ε) ∈ N such that for all m > m1,

∥tmn0
− L∥+0 <

ε

2
.

Thus, for given ε > 0 and arbitrary n ∈ N, when m > max{m0,m1} is taken,

∥tmn − L∥+0 ≤ ∥tmn − tmn0
∥+ ∥tmn0

− L∥+0
<

ε

2
+

ε

2
= ε.

So it can be seen that the sequence x is invariant convergent to L.
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