DOI QR코드

DOI QR Code

Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method

  • Received : 2020.07.30
  • Accepted : 2021.08.11
  • Published : 2021.09.25

Abstract

Steel- concrete composite beams are widely used in the construction of tall building with steel floors. In these floors, the bearing capacity of beams in which the performance of concrete and steel is composite is more than 30% of the same beams with non-composite performance. Fire, especially in buildings, has a devastating effect on the components of the structure including the columns, beams, floors, etc. Also, fire indirectly affects the shear connectors buried in floor concrete and reduces their strength, thus reducing the overall strength of the floor. In this research, the behavior of angle shear connectors as a type of shear connectors used in the steel-concrete composite floor due to temperature increase was investigated numerically. Thermo-mechanical finite element modeling was performed using Abaqus software on push-out samples, and the results have been compared with the results obtained from the laboratory tests. Similar to the laboratory conditions, samples with different dimensions of angle shear connectors were modeled at different temperatures including 25, 550, 700 and 850 degrees Celsius. According to the laboratory process, 24 samples were modeled in Abaqus software thermally. The research results showed that the models made in the software were able to accurately predict the laboratory results including shear strength and slip. It was found that the maximum shear force error between analytical and laboratory results is 21.6% and the minimum shear force error in some samples is near to zero. As the temperature increases, the error rate between the laboratory and analytical results increases. Also, shear connector dimensions, concrete strength and temperature value have direct effect on the final strength of steel-concrete composite floors and load slip diagrams. It was also concluded that increasing the angle height to a certain extent could increase the final shear strength of the steel-concrete floor and increasing the angle height after a certain limit had no effect on increasing the shear strength and results in material loss and uneconomical design. Moreover, results indicated that increasing the temperature up to 850℃ leads to reducing the shear strength of the samples by approximately 56%.

Keywords

References

  1. Abedini, M. and Zhang, C. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., 77(4), 441-461. https://doi.org/10.12989/sem.2021.77.4.441.
  2. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct. Mach., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343.
  3. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through beam connections composed of CFSST columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333. http://dx.doi.org/10.4028/www.scientific.net/AMR.168-170.2329.
  4. Arabnejad Khanouki, M.M., Ramli Sulong, N.H., Shariati, M. and Tahir, M.M. (2016), "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Constr. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002.
  5. Balasubramanian, R. and Rajaram, B. (2016), "Study on behaviour of angle shear connector in steel- concrete composite structures", Int. J. Steel Struct., 16(3), 807-811. https://doi.org/10.1007/s13296-015-0094-0.
  6. Benedetti, A. and Mangoni, E. (2007), "Analytical prediction of composite beams response in fire situations", J. Constr. Steel Res., 63(2), 221-228. https://doi.org/10.1016/j.jcsr.2006.04.013.
  7. Chen, L.Z., Ranzi, G., Jiang, S.C., Tahmasebinia, F. and Li, G.Q. (2015), "Behaviour and design of shear connectors in composite slabs at elevated temperatures", Constr. Steel Res., 115, 387-397. https://doi.org/10.1016/j.jcsr.2015.08.025.
  8. Chen, L.Z., Ranzi, G., Jiang, S.C., Tahmasebinia, F. and Li, G.Q. (2016), "Performance and design of shear connectors in composite beams with parallel profiled sheeting at elevated temperatures", Int. J. Steel Struct., 16(1), 217-229. https://doi.org/10.1007/s13296-016-3016-x.
  9. Chen, L., LI, G. and Jiang, S. (2012), "Experimental studies on the behavior of headed studs shear connectors at elevated temperatures", Proceedings of the 7th International Conference on Steel & Aluminum Structures. Kuching, Sarawak, Malaysia.
  10. Chen, L., Xu, J., Zhang, M., Rong, T., Jiang, Z. and Li, P. (2021), "Systematic study on mechanical and electronic properties of ternary VAlN, TiAlN and WAlN systems by first-principles calculations", Ceramics Int., 47(6), 7511-7520. https://doi.org/10.1016/j.ceramint.2020.11.090.
  11. Cooke, G.M.E., Lawson, R.M. and Newman, G.M. (1988), "Fire resistance of composite deck slabs", Struct. Engineer, 66, 253-267.
  12. Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M.M., Shariati, A. and Kazemi-Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci., 6(36), 8044-8050. https://doi.org/10.5897/ijps11.1585.
  13. Darabi, M.K., Kola, R., Little, D.N., Rahmani, E. and Garg, N. (2019), "Predicting rutting performance of flexible airfield pavements using a coupled viscoelastic-viscoplastic-cap constitutive relationship", J. Eng. Mech., 145(2), 04018129. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001516.
  14. Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. https://doi.org/10.12989/scs.2019.30.2.141.
  15. Deng, H., Chen, Y., Jia, Y., Pang, Y., Zhang, T., Wang, S. and Yin, L. (2021), "Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding", J. Manufact. Processes, 64, 379-391. https://doi.org/10.1016/j.jmapro.2021.01.024.
  16. Du, Y., Pan, N., Xu, Z., Deng, F., Shen, Y. and Kang, H. (2020), "Pavement distress detection and classification based on YOLO network", Int. J. Pavement Eng., 1-14. https://doi.org/10.1080/10298436.2020.1714047.
  17. El-Zohairya, A., Alshararib, F. and Salimc, H. (2020), "Analytical model and parametric study for externally post-tensioned reinforced concrete-steel composite beams", Structures, 27, 411-423. https://doi.org/10.1016/j.istruc.2020.05.060.
  18. Eurocode 4 2004 (2004), Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings: 110-114.
  19. Eurocode 2 2004 (2004), Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design.
  20. Eurocode 3 2005 (2005), Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design.
  21. Fahrni, M. and Tamara, T. (2012), "Finite element analysis of composite steel-concrete beams subjected to fire", Nahrain Univ. College of Eng. J. (NUCEJ), 15(1), 1-11.
  22. Fan, P., Deng, R., Qiu, J., Zhao, Z. and Wu, S. (2021), "Well logging curve reconstruction based on kernel ridge regression", Arabian J. Geosci., 14(16), 1-10. https://doi.org/10.1007/s12517-021-07792-y.
  23. Fanaie, N. and Aghajani, S. (2012), "Wire-rope bracing system with central cylinder, element based application finite element based application", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon.
  24. Fanaie, N., Esfahani, F.G. and Soroushnia, S. (2015), "Analytical study of composite beams with different arrangements of channel shear connectors", Steel Compos. Struct., 19(2), 485-501. http://doi.org/10.12989/scs.2015.19.2.485.
  25. Fanaie, N., Kazerani, S. and Soroushnia, S. (2017a), "Numerical study of slotted web drilled flange moment frame connection", Int. J. Numer. Method. Civil Eng., 1(3), 16-23.
  26. Fanaie, N. and Tahriri, M. (2017b), "Stability and stiffness analysis of a steel frame with an oblique beam using method of least work", J. Constr. Steel Res., 137, 342-357. https://doi.org/10.1016/j.jcsr.2017.06.032.
  27. Fazaeli, A., Habibi, M. and Ekrami, A.A. (2016), "Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite-pearlite steel with the same chemical composition", Metallurgical Eng., 19(2), 84-93. https://doi.org/10.22076/ME.2017.41458.1064.
  28. Feng, P., Chang, H., Liu, X., Ye, S., Shu, X. and Ran, Q. (2020), "The significance of dispersion of nano-SiO2 on early age hydration of cement pastes", Mater. Design, 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320.
  29. Ghalamzan Esfahani, F. and Fanaie, N. (2017), "Finite element analysis of a rigid beam to column connection reinforced with channels", Int. J. Numer. Methods Civil Eng., 2(1), 37-48. https://doi.org/10.29252/nmce.2.1.37
  30. Habibi, M., Ghazanfari, A., Assempour, A., Naghdabadi, R. and Hashemi, R. (2017), "Determination of forming limit diagram using two modified finite element models", Mech. Eng., 48(4), 141-144.
  31. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2018), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 625-636. https://doi.org/10.1177/1464420716642258.
  32. Hamidian, M., Shariati, M., Arabnejad, M. and Sinaei, H. (2011), "Assessment of high strength and light weight aggregate concrete properties using ultrasonic pulse velocity technique", Int. J. Phys. Sci., 6(22), 5261-5266. https://doi.org/10.5897/IJPS11.1081.
  33. Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., 66(6), 737-748. https://doi.org/10.12989/sem.2018.66.6.737.
  34. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485.
  35. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021a), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  36. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. with Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  37. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi,M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. with Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  38. Huang, Z., Burgess, I.W. and Plank, R.J. (1999), "The influence of shear connectors on the behaviour of composite steel-framed buildings in fire", J. Constr. Steel Res., 51(3), 219-237. https://doi.org/10.1016/S0143-974X(99)00028-0.
  39. ISO 834 (1999), Fire resistance tests. Element of building construction.
  40. Jahandari, S., Tao, Z., Saberian, M., Shariati, M., Li, J., Abolhasani, M., Kazemi, M., Rahmani, A. and Rashidi, M. (2021), "Geotechnical properties of lime-geogrid improved clayey subgrade under various moisture conditions", Road Mater. Pavement Design, 1-19. https://doi.org/10.1080/14680629.2021.1950816.
  41. Jalali, A., Daie, M., Nazhadan, S.V.M., Kazemi-Arbat, P. and Shariati, M. (2012), "Seismic performance of structures with pre-bent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072. https://doi.org/10.5897/IJPS11.1324.
  42. Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. with Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.
  43. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. with Comput., 1-20. https://doi.org/10.1007/s00366-019-00780-7.
  44. Keith, C., Dehghani Najvani, M.A., O'Reilly, M., Medina, M., Darwin, D., Abdul Baki, A.N., Nazzal, L.A. and Lee, K.O. (2017), Assessment of Moisture-Tolerant Coatings for Decreasing Open Top Construction Time, University of Kansas Center for Research, Inc.
  45. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017a), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", http://doi.org/10.12989/eas.2017.13.6.531.
  46. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017b), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", https://doi.org/10.12989/sem.2017.63.2.259.
  47. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067.
  48. Khorramian, K., Maleki, S., Shariati, M. and Ramli Sulong, N.H. (2015), "Behavior of tilted angle shear connectors", PLoS One, 10(12), 1-11 https://doi.org/10.1371/journal.pone.0144288.
  49. Lamont, S., Usmani, A.S. and Gillie, M. (2004), "Behaviour of a small composite steel frame structure in a "long-cool" and a "short-hot" fire", Fire Saf. J., 39(5), 327-357. https://doi.org/10.1016/j.firesaf.2004.01.002.
  50. Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., Mohamad, E.T. and Khorami, M. (2019), "Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete", Smat Struct. Syst., 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.
  51. Lim, O.K., Choi, S., Kang, S., Kwon, M. and Choi, J.Y. (2019), "Experimental studies on the behaviour of headed shear studs for composite beams in fire", P. roceedings of the 2019 World Congress on Advances in Structural Engineering and Mechanics (ASEM19), Jeju Island, Korea.
  52. Lu, W., Ma, Z., Makelainen, P. and Outinen, J. (2012), "Behaviour of shear connectors in cold-formed steel sheeting at ambient and elevated temperatures", Thin-Wall. Struct., 61, 229-238. https://doi.org/10.1016/j.tws.2012.04.008.
  53. Lu, W., Ma, Z.C., Makelainen, P. and Outinen, J. (2013), "Design of shot nailed steel sheeting connection at ambient and elevated temperatures", Eng. Struct., 49, 963-972. https://doi.org/10.1016/j.engstruct.2012.12.034.
  54. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. with Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  55. Majedi, M., Afrazi, M. and Fakhimi, A. (2020), FEM-BPM simulation of SHPB testing for measurement of rock tensile strength. 54th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
  56. Majedi, M.R., Afrazi, M. and Fakhimi, A. (2021), "A micromechanical model for simulation of rock failure under high strain rate loading", Int. J. Civil Eng., 19(5), 501-515. https://doi.org/10.1007/s40999-020-00551-2.
  57. Maleki, S. and Bagheri, S. (2008), "Behavior of channel shear connectors, Part I: Experimental study", Constr. Steel Res., 64(12), 1333-1340. https://doi.org/10.1016/j.jcsr.2008.01.010.
  58. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intel. Manufact., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6
  59. Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., Shariati, A. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.1016/j.conbuildmat.2021.122652.
  60. Mirza, O. and Uy, B. (2009), "Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures", Constr. Steel Res., 65(3), 662-674. https://doi.org/10.1016/j.jcsr.2008.03.008.
  61. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853.
  62. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014a). "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785.
  63. Mohammadhassani, M., Suhatril, M., Shariati, M. and Ghanbari, F. (2014b), "Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios", Struct. Eng. Mech., 48(6), 833-848. https://doi.org/10.12989/sem.2013.48.6.833.
  64. Naghipour, M., Niak, K.M., Shariati, M. and Toghroli, A. (2020a), "Effect of progressive shear punch of a foundation on a reinforced concrete building behavior", Steel Compos. Struct., 35(2), 279-294. https://doi.org/10.12989/scs.2020.35.2.279.
  65. Naghipour, M., Yousofizinsaz, G. and Shariati, M. (2020b), "Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines", Steel Compos. Struct., 34(3), 347-359. https://doi.org/10.12989/scs.2020.34.3.347.
  66. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., 27(5), 537-543. http://doi.org/10.12989/scs.2018.27.5.537.
  67. Nouri, K., Sulong, N.R., Ibrahim, Z. and Shariati, M. (2021), "Behaviour of novel stiffened angle shear connectors at ambient and elevated temperatures", Adv. Steel Constr., 17(1), 28-38.
  68. Paknahad, M., Shariati, M., Sedghi, Y., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., 28(4), 483-494. http://doi.org/10.12989/scs.2018.28.4.483.
  69. Partovi, F. and Fanaie, N. (2020), "Controlling deflection of long steel I-shaped girder bridge using two V-shaped pre-tensioning cables", J. Central South Univ., 27(2), 566-577. https://doi.org/10.1007/s11771-020-4317-y.
  70. Qi, C., Chen, Q. and Kim, S.S. (2020), "Integrated and intelligent design framework for cemented paste backfill: A combination of robust machine learning modelling and multi-objective optimization", Minerals Eng., 155, 106422. https://doi.org/10.1016/j.mineng.2020.106422.
  71. Qi, C. and Fourie, A. (2019), "Cemented paste backfill for mineral tailings management: Review and future perspectives", Minerals Eng., 144, 106025. https://doi.org/10.1016/j.mineng.2019.106025.
  72. Qiao, W., Yan, X., Zhu, R., Wang, F. and Wang, D. (2020), "Flexural properties of new cold-formed thin-walled steel and concrete composite slabs", J. Build. Eng., 31, 100-200. https://doi.org/10.1016/j.jobe.2020.101441.
  73. Quevedo, R.L. and Silva, V.P. (2013), "Thermal analysis of push-out tests at elevated temperatures", Fire Saf., 55, 1-14. https://doi.org/10.1016/j.firesaf.2012.08.009.
  74. Ranzi, G. and Bradford, M.A. (2007), "Composite beams with both longitudinal and transverse partial interaction subjected to elevated temperatures", Eng. Struct., 29(10), 2737-2750. https://doi.org/10.1016/j.engstruct.2007.01.022
  75. Razavian, L., Naghipour, M., Shariati, M. and Safa, M. (2020), "Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression", Struct. Eng. Mech., 74(1), 145-156. https://doi.org/10.12989/sem.2020.74.1.145.
  76. Rezaeian, A., Jahanbakhti, E. and Fanaie, N. (2020), "Numerical study of panel zone in a moment connection without continuity plates", J. Earthq. Eng., 1-19. https://doi.org/10.1080/13632469.2019.1695021.
  77. Rodrigues, J.P.C. and Laim, L. (2011), "Behaviour of Perfobond shear connectors at high temperatures", Eng. Struct., 33(10), 2744-2753. https://doi.org/10.1016/j.engstruct.2011.05.004.
  78. Rossia, A., Nicolettia, R.S., Souzaa, A.S.C.d. and Martinsb, C.H. (2020), "Lateral distortional buckling in steel-concrete composite beams: A review", Structures, 27, 1299-1312. https://doi.org/10.1016/j.istruc.2020.07.026.
  79. Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., 22(4), 413-424. http://doi.org/10.12989/sss.2018.22.4.413.
  80. Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", 550, Physica A: Stat. Mech. its Appl., 124046. https://doi.org/10.1016/j.physa.2019.124046.
  81. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  82. Satoshi, S., Shintaro, M., Yutaka, K. and Hiroyuki, N. (2008), "Experimental study on shear strength of headed stud shear connectors at high temperature", Struct. Constr. Eng. AIJ, 73(630), 1417-1433. https://doi.org/10.3130/aijs.73.1417
  83. Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., 22(3), 335-340. https://doi.org/10.12989/sss.2018.22.3.335.
  84. Shah, S., Sulong, N.R., Jumaat, M. and Shariati, M. (2016), "State-of-the-art review on the design and performance of steel pallet rack connections", Eng. Fail. Anal., 66, 240-258. https://doi.org/10.1016/j.engfailanal.2016.04.017.
  85. Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M. and Shah, S. (2016a), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651.
  86. Shahabi, S., Sulong, N., Shariati, M. and Shah, S. (2016b), "Performance of shear connectors at elevated temperatures-A review", Steel Compos. Struct., 20(1), 185-203. https://doi.org/10.12989/scs.2016.20.1.185.
  87. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018). "Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243.
  88. Shariati, A., Ramli Sulong, N.H.,. Suhatril, M. and Shariati, M. (2012a). "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831. https://doi.org/10.5897/IJPS11.1604.
  89. Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Shariati, M. (2012b), "Various types of shear connectors in composite structures: A review", Int. J. Phys. Sci., 7(22), 2876-2890. https://doi.org/10.5897/IJPSx11.004.
  90. Shariati, A., Shariati, M., Ramli Sulong, N.H., Suhatril, M., Arabnejad Khanouki, M.M. and Mahoutian, M. (2014a), "Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Constr. Build. Mater., 52, 276-283.: http://dx.doi.org/10.1016/j.conbuildmat.2013.11.036.
  91. Shariati, M. (2008), Assessment of Building Using None-destructive Test Techniques (ultra Sonic Pulse Velocity and Schmidt Rebound Hammer), Universiti Putra Malaysia.
  92. Shariati, M. (2013), Behaviour of C-shaped shear connectors in stell concrete composite beams, Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya.
  93. Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2020a), "Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load", Geomech. Eng., 20(2), 87-101. https://doi.org/10.12989/gae.2020.20.2.087.
  94. Shariati, M., Ghorbani, M., Naghipour, M., Alinejad, N. and Toghroli, A. (2020b), "The effect of RBS cnnection on energy absorption in tall buildings with braced tube frame system", Steel Compos. Struct., 34(3), 393-407. http://doi.org/10.12989/scs.2020.34.3.393.
  95. Shariati, M., Grayeli, M., Shariati, A. and Naghipour, M. (2020c). "Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading", Steel Compos. Struct., 36(5), 587-602. https://doi.org/10.12989/scs.2020.36.5.587.
  96. Shariati, M., Lagzian, M., Maleki, S., Shariati, A. and Trung, N.T. (2020d), "Evaluation of seismic performance factors for tension-only braced frames", Steel Compos. Struct., 35(4), 599-609. https://doi.org/10.12989/scs.2020.35.4.599.
  97. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020e), "A novel hybrid extreme learning machine-grey wolf optimizer (ELMGWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. with Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  98. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A.(2020f), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155.
  99. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M.,Wakil, K., Trung, N.T. and Toghroli, A. (2020g), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  100. Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019a), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.
  101. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A. Toghroli, A., Trung, N.T. and Salih, M.N. (2021), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. with Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
  102. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A. Toghroli, A., Trung, N.T. and Salih, M.N. (2020h), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. with Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
  103. Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N.T., Salih, M.N. and PoiNgian, S. (2019b), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  104. Shariati, M., Naghipour, M., Yousofizinsaz, G.,Toghroli, A. and Tabarestani, N.P. (2020i), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct., 34(3), 377-391. https://doi.org/10.12989/scs.2020.34.3.377.
  105. Shariati, M., Ramli-Sulong, N.H., KH, M.M.A., Shafigh, P. and Sinaei, H. (2011a), "Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests", Scientific Res. Essays, 6(1), 213-220. https://doi.org/10.5897/SRE10.879.
  106. Shariati, M., Ramli Sulong, N.H. and Arabnejad Khanouki, M.M. (2010), "Experimental and analytical study on channel shear connectors in light weight aggregate concrete", Proceedings of the 4th International Conference on Steel & Composite Structures, 21 - 23 July, 2010, Sydney, Australia.
  107. Shariati, M., Ramli Sulong, N,H. and Arabnejad Khanouki, M.M. (2012c), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Design, 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008.
  108. Shariati, M., Ramli Sulong, N.H., Arabnejad Khanouki, M.M. and Shariati, A. (2011b), "Experimental and numerical investigations of channel shear connectors in high strength concrete", Proceedings of the 2011 world congress on advances in structural engineering and mechanics (ASEM'11+).
  109. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Arabnejad Khanouki, M.M. (2015), "Behavior of V-shaped angle shear connectors: experimental and parametric study", Mater. Struct., 49(9), 3909-3926. https://doi.org/10.1617/s11527-015-0762-8.
  110. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Kueh, A.B.H. (2016), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Constr. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102.
  111. Shariati, M., Ramli Sulong, N.H., Sinaei, H., Arabnejad Khanouki, M.M. and Shafigh, P. (2011c), "Behavior of channel shear connectors in normal and light weight aggregate concrete (Experimental and Analytical Study)", Adv. Mater. Res., 168, 2303-2307. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2303.
  112. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2012d), "Behaviour of C-shaped angle shear connectors under monotonic and fully reversed cyclic loading: An experimental study", Mater. Design, 41, 67-73. https://doi.org/10.1016/j.matdes.2012.04.039.
  113. Shariati, M., N Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2012e), "Fatigue energy dissipation and failure analysis of channel shear connector embedded in the lightweight aggregate concrete in composite bridge girders", Proceedings of the 5th International Conference on Engineering Failure Analysis, 1-4 July 2012, Hilton Hotel, The Hague, The Netherlands.
  114. Shariati, M. and Shariati, A. (2021), "Hybridization of metaheuristic algorithms with adaptive neuro-fuzzy inference system to predict load-slip behavior of angle shear connectors at elevated temperatures", Compos. Struct., 114524. https://doi.org/10.1016/j.compstruct.2021.114524.
  115. Shariati, M., Shariati, A., Sulong, N.R., Suhatril, M. and Khanouki, M.A. (2014b), "Fatigue energy dissipation and failure analysis of angle shear connectors embedded in high strength concrete", Eng. Fail. Anal., 41, 124-134. https://doi.org/10.1016/j.engfailanal.2014.02.017.
  116. Shariati, M., Shariati, A., Trung, N.T., Shoaei, P., Ameri, F., Bahrami, N. and Zamanabadi, S.N. (2020j), "Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics", Constr. Build. Mater., 120886. https://doi.org/10.1016/j.conbuildmat.2020.120886.
  117. Shariati, M., Sulong, N.R., KH, M.A. and Mahoutian, M. (2011d), "Shear resistance of channel shear connectors in plain, reinforced and lightweight concrete", Sci. Res. Essays, 6(4), 977-983.
  118. Shariati, M., Sulong, N.R. and Khanouki, M.A. (2012f), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Design, 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008.
  119. Shariati, M., Tahir, M.M., Wee, T.C.,Shah, S., Jalali, A., Abdullahi, M.A.M. and Khorami, M. (2018), "Experimental investigations on monotonic and cyclic behavior of steel pallet rack connections", Eng. Fail. Anal., 85, 149-166. https://doi.org/10.1016/j.engfailanal.2017.08.014.
  120. Shariati, M., Tahmasbi, F., Mehrabi, P., Bahadori, A. and Toghroli, A. (2020k), "Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: an experimental investigation", Steel Compos. Struct., 35(2), 237-247. https://doi.org/10.12989/scs.2020.35.2.237.
  121. Shariati, M., Toghroli, A., Jalali, A. and Ibrahim, Z. (2017), "Assessment of stiffened angle shear connector under monotonic and fully reversed cyclic loading", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering-CSM 2017.
  122. Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019c), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel Compos. Struct., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
  123. Sinaei, H., Jumaat, M.Z. and Shariati, M. (2011), "Numerical investigation on exterior reinforced concrete Beam-Column joint strengthened by composite fiber reinforced polymer (CFRP)", Int. J. Phys. Sci., 6(28), 6572-6579. https://doi.org/10.5897/IJPS11.1225.
  124. Sinaei, H., Shariati, M., Abna, A.H., Aghaei, M. and Shariati, A. (2012), "Evaluation of reinforced concrete beam behaviour using finite element analysis by ABAQUS", Sci. Res. Essays, 7(21), 2002-2009. https://doi.org/10.5897/SRE11.1393.
  125. Tahmasbi, F., Maleki, S., Shariati, M., Ramli Sulong, N.H. and Tahir, M.M. (2016), "Shear capacity of C-shaped and L-shaped angle shear connectors", PLoS One, 11(8), e0156989. https://doi.org/10.1371/journal.pone.0156989.
  126. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., 17(5), 623-639. http://doi.org/10.12989/scs.2014.17.5.623.
  127. Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E.T. and Khorami, M. (2018), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.
  128. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intel. Manufact., 1-9. https://doi.org/10.1007/s10845-016-1217-y.
  129. Trung, N.T., Shahgoli, A.F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019a), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
  130. Uddina, M.A., Alzaraa, M.A., Mohammadb, N. and Yosria, A. (2020), "Convergence studies of finite element model for analysis of steel-concrete composite beam using a higher-order beam theory", Structures, 27, 2025-2033. https://doi.org/10.1016/j.istruc.2020.07.073.
  131. Utashev, N., Tufail, R.F., Wang, Z.Y., Wang, Q.Y. and Durdyev, S. (2021), "Anchorage of Perfobond Leiste shaped shear connector composite dowel with carbon fibre reinforced polymer", J. Build. Eng., 34(1), 107-120. https://doi.org/10.1016/j.jobe.2020.101711.
  132. Wang, A.J. (2011), "Numerical investigation into headed shear connectors under fire", J. Struct. Eng., 138(1), 118-122. https://doi.org/10.1061/(asce)st.1943-541x.0000428
  133. Wang, Q., Yang, J., Liang, Y., Zhang, H., Zhao, Y. and Ren, Q. (2020), "Prediction of time-dependent behaviour of steel-recycled aggregate concrete (RAC) composite slabs via thermo-mechanical finite element modelling", J. Build. Eng., 29, 100-120. https://doi.org/10.1016/j.jobe.2020.101191.
  134. Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. with Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.
  135. Xiao, G., Song, K., He, Y., Wang, W., Zhang, Y. and Dai, W. (2021), "Prediction and experimental research of abrasive belt grinding residual stress for titanium alloy based on analytical method", Int. J. Adv. Manufact. Technol., 1-15. https://doi.org/10.1007/s00170-021-07272-3.
  136. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  137. Xu, D.S., Huang, M. and Zhou, Y. (2020a), "One-dimensional compression behavior of calcareous sand and marine clay mixtures", Int. J. Geomech., 20(9), 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
  138. Xu, D., Liu, Q., Qin, Y. and Chen, B. (2020b), "Analytical approach for crack identification of glass fiber reinforced polymer-sea sand concrete composite structures based on strain dissipations", Struct. Health Monit., 1475921720974290. https://doi.org/10.1177/1475921720974290.
  139. Xu, J., Wu, Z., Chen, H., Shao, L., Zhou, X. and Wang, S. (2021). "Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology", KSCE J. Civil Eng., 1-13. https://doi.org/10.1007/s12205-021-2034-1.
  140. Yazdani, M., Kabirifar, K., Frimpong, B.E., Shariati, M., Mirmozaffari, M. and Boskabadi, A. (2020), "Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia", J. Cleaner Production, 280, 124138. https://doi.org/10.1016/j.jclepro.2020.124138.
  141. Zhang, C., Alam, Z., Sun, L., Su, Z. and Samali, B. (2019), "Fibre Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads", Struct. Control Health Monit., 26(3), e2307. https://doi.org/10.1002/stc.2307.
  142. Zhang, W., Tang, Z.,Yang, Y., Wei, J. and Stanislav. P. (2021), "Mixed-mode debonding behavior between CFRP plates and concrete under fatigue loading", J. Struct. Eng., 147(5), 04021055. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003032.
  143. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. with Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  144. Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018). "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. http://doi.org/10.12989/scs.2018.29.1.067.