DOI QR코드

DOI QR Code

Effects of Air Velocity on the Thermal Insulation of Winter-padded Clothing Ensembles at 10℃ Air Temperature -Comparison of Human Wear Trials with a Thermal Manikin-

10℃ 환경에서 기류가 겨울철 패딩 의류의 한 벌 보온력에 미치는 영향 -인체 착용 및 서멀마네킹 측정 비교-

  • Baek, Yoon Jeong (BK21 FOUR Graduate School Innovation Center, Seoul National University) ;
  • Cho, Kayoung (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University) ;
  • Hong, Yujin (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University) ;
  • Lee, Joo-Young (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University/Research Institute of Human Ecology, Seoul National University/Graphene Research Center for Convergence Technology, Advanced Institute of Convergence Technology)
  • 백윤정 (서울대학교 4단계 BK21 대학원혁신사업단) ;
  • 조가영 (서울대학교 의류학과) ;
  • 홍유진 (서울대학교 의류학과) ;
  • 이주영 (서울대학교 의류학과/서울대학교 생활과학연구소/차세대융합기술연구원 그래핀 융합기술 연구센터)
  • Received : 2021.05.14
  • Accepted : 2021.07.06
  • Published : 2021.08.31

Abstract

This study was to investigate the thermal insulation of clothing ensembles, including padded jackets with two different filling types. Thermal insulation of the ensemble was measured using a thermal manikin in four conditions (10℃, 30% RH and 20℃, 50% RH with an air velocity of less than 0.15 m·s-1 and 1.5 m·s-1). Ten males participated at 10℃ and 30% RH with an air velocity of less than 0.15 m·s-1 and 1.5 m·s-1. The results showed that the polyester ensemble was warmer than a goose down ensemble in 0.15 m·s-1 conditions and the goose down ensemble had greater thermal insulation than the polyester ensemble at an air velocity of 1.5 m·s-1. Thermal insulation was reduced 5-7% when temperature decreased 10℃ and reduced 40-50% when air velocity reached 1.5 m·s-1 for both ensembles. Thermal insulation of the ensemble in human trials decreased more than a thermal manikin at 10℃, 30% RH with an air velocity of 1.5 m·s-1. Lower temperatures and human trials were effective in identifying the properties of the thermal insulation by filling types even though there were restrictions on the general application because of two types of a clothing ensemble.

Keywords

Acknowledgement

본 논문은 2017년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NFR No.2017R1A6A3A11031204).

References

  1. Afanasieva, R. F., Bessonova, N. A., Burmistrova, O. V., Burmistrov, V. M., Holmer, I., & Kuklane, K. (2000). Comparative evaluation of the methods for determining thermal insulation of clothing ensemble on a manikin and person. In K. Kuklane., & I. Holmer (Eds.), Ergonomics of protective clothing: Proceedings of NOKOBETEF 6 and 1st European Conference on Protective Clothing held in Stockholm, Sweden, May 7-10, 2000 (pp. 188-191). Stockholm: Arbetslivsinstitutet.
  2. Baek, Y. J., Hwang, S. K., Lee, H. H., Park, J., Kim, D.-H., & Lee, J.-Y. (2018). Quantification of thermal insulation by clothing items and analysis of influencing factors. Journal of the Korean Society of Clothing and Textiles, 42(1), 172-182. doi:10.5850/JKSCT.2018.42.1.172
  3. Bouskill, L. M., Haveith, G., Kuklane, K., Parsons, K. C., & Withey, W. R. (2002). Relationship between clothing ventilation and thermal insulation. AIHA Journal, 63(3), 262-268. doi:10.1080/15428110208984712
  4. Burton, A. C., & Edholm, O. G. (1955). Man in a cold environment. London: Edward Arnold (Publishers) Ltd.
  5. Choi, J.-W., & Kim, M.-J. (2011). Clothing and health: Clothing physiology functional clothing. Paju: Kyomunsa.
  6. Choi, J.-W., & Lee, H.-H. (2009). The relationship between weight of single garments and thermal insulation with a thermal manikin. Journal of the Korean Society of Clothing and Textiles, 33(2), 173-186. doi:10.5850/JKSCT.2009.33.2.173
  7. Hardy, J. D., Du Bois, E. F., & Soderstrom, G. F. (1938). Basal metabolism, radiation, convection and vaporization at temperatures of 22 to 35℃. Six figures. The Journal of Nutrition, 15(5), 477-497. doi:10.1093/jn/15.5.477
  8. Havenith, G., Heus, R., & Lotens, W. A. (1990). Resultant clothing insulation: A function of body movement, posture, wind, clothing fit and ensemble thickness. Ergonomics, 33(1), 67-84. doi:10.1080/00140139008927094
  9. Holmer, I., & Nilsson, H. (1995). Heated manikins as a tool for evaluating clothing. The Annals of Occupational Hygiene, 39(6), 809-818. doi:10.1016/0003-4878(95)00041-0
  10. Holmer, I., Nilsson, H., Havenith, G., & Parsons, K. (1999). Clothing convective heat exchange-proposal for improved prediction in standards and models. The Annals of Occupational Hygiene, 43(5), 329-337. doi:10.1093/annhyg/43.5.339
  11. International Organization for Standardization (2007a, June). ISO 9920:2007 Ergonomics of the thermal environment - Estimation of thermal insulation and water vapour resistance of a clothing ensemble. ISO. Retrieved from https://www.iso.org/standard/39257.html
  12. International Organization for Standardization. (2007b, December). ISO 11079:2007. Ergonomics of the thermal environment - Determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects. ISO. Retrieved from https://www.iso.org/standard/38900.html
  13. Jeong, Y. O., & Choi, J. W. (1984). An experimental study on the thermal insulation of the linin fabrics. Journal of the Korean Society of Clothing and Textiles, 8(1), 1-11.
  14. Jin, Y. B., Kim, S., Han, H. J., Sa, A. N., & Park, C. K. (2018). Study on thermal insulation property of military cold-weather clothing using a thermal manikin. Textile Science and Engineering, 55(1), 48-55. doi:10.12772/TSE.2018.55.048
  15. Jung, I. G., Lee, C. Y., Lee, A. R., Park, S. H., Kang, G. J., & Park, M. G. (2017, December 1). <패션인사이트>선정 '2017 한국 패션산업 10대 뉴스' ['2017 Korean Fashion Industry Top 10 News' by ]. Fashion Insight. Retrieved from https://www.fi.co.kr/main/view.asp?idx=61026
  16. Kim, K.-S. (2019). Comparison and analysis of outdoor wear brand using opinion mining analysis: Focusing on domestic top 10 outdoor wear brands. Korean Journal of Leisure, Recreation & Park, 43(2), 35-50. doi:10.26446/kjlrp.2019.6.43.2.35
  17. Kim, S., Kim, E., & Park, Y. (2018). Thermal insulation and morphology of natural and synthetic filled outdoor sportswear by repeated water washing and dry cleaning. International Journal of Clothing Science and Technology, 30(3), 428-443. doi:10.1108/IJCST-09-2017-0149
  18. Kim, Y.-B., Jang, W., Kim, K., Kim, S., Baek, Y. J., & Lee, J.-Y. (2015). Comparisons of thermal insulations between on aircell pack embedded jacket and down jackets. Journal of the Korean Society of Clothing and Textiles, 39(1), 55-62. doi:10.5850/JKSCT.2015.39.1.55
  19. Korea Meteorological Administration. (2021, March 10). 기후통계-통계분석-기온분석 [Climatic statistics-Statistic analy sis-Temperature analaysis]. Open MET Data Portal. Retrieved from https://data.kma.go.kr/stcs/grnd/grndTaList.do?pgmNo=70
  20. Kuklane, K., Gao, C., Wang, F., & Holmer, I. (2012). Parallel and serial methods of calculating thermal insulation in European manikin standards. International Journal of Occupational Safety and Ergonomics, 18(2), 171-179. doi:10.1080/10803548.2012.11076926
  21. Kuklane, K., Sandsund, M., Reinertsen, R. E., Tochihara, Y., Fukazawa, T., & Holmer, I. (2004). Comparison of thermal manikins of different body shapes and size. European Journal of Applied Physiology, 92(6), 683-688. doi:10.1007/s00421-004-1116-3
  22. Kwon, J., & Choi, J. (2012). The relationship between environmental temperature and clothing insulation across a year. International Journal of Biometeorology, 56(5), 887-893. doi:10.1007/s00484-011-0493-7
  23. Kwon, J., Kim, S., Baek, Y. J., & Lee, J.-Y. (2021). Comparison and evaluation of clothing insulation of newly-developed air-filled baffle jackets and down padded jackets. Fashion & Textile Research Journal, 23(2), 261-272. doi:10.5805/SFTI.2021.23.2.261
  24. Lee, H. S. (1997, November 5). 하늘도 내 편으로 만드는 기상 마케팅 [Weather marketing which makes the sky on my side]. LG Business Insight, 439, 52-59. Retrieved from http://www.lgeri.com/report/view.do?idx=2279
  25. Lee, J.-S., Kim, H.-E. & Song, M.-K. (2008). Physiological responses of cold protective clothing with different clo value. Journal of the Korean Society for Clothing Industry, 10(5), 683-689.
  26. Lee, J.-Y., Ko, E.-S., Lee, H.-H., Kim, J.-Y., & Choi, J.-W. (2011). Validation of clothing insulation estimated by global and serial methods. International Journal of Clothing Science and Technology, 23(2/3), 184-198. doi:10.1108/09556221111107360
  27. Lee, J.-Y., Wakabayashi, H., Wijayanto, T., & Tochihara, Y. (2010). Differences in rectal temperatures measured at depths of 4-19 cm from the anal sphincter during exercise and rest. European Journal of Applied Physiology, 109(1), 73-80. doi:10.1007/s00421-009-1217-0
  28. Lee, Y.-J., & Lee, S.-W. (1989). The effects of Parka on subject wear sensation as to thermal resistance. Journal of the Korean Society of Clothing and Textiles, 13(3), 295-303.
  29. Liu, W., Yang, D., Shen, X., & Yang, P. (2018). Indoor clothing insulation and thermal history: A clothing model based on logistic function and running mean outdoor temperature. Building and Environment, 135, 142-152. doi:10.1016/j.builden v.2018.03.015
  30. Lu, Y., Wang, F., Wan, X., Song, G., Shi, W., & Zhang, C. (2015). Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation. International Journal of Biometeorology, 59(10), 1475-1486. doi:10.1007/s00484-015-0958-1
  31. Mochida, T. (1977). Convective and radiative heat transfer coefficients for human body. Bulletin of the Faculty of Engineering, Hokkaido University, 84, 1-11. Retrieved from http://hdl.handle.net/2115/41421
  32. Nielsen, R., Olesen, B. W., & Fanger, P. O. (1985). Effect of physical activity and air velocity on the thermal insulation of clothing. Ergonomics, 28(12), 1617-1631. doi:10.1080/00140138508963299
  33. Nishi, Y., & Gagge, A. P. (1973). Moisture permeation of clothing - A factor governing thermal equilibrium and comfort. Memoirs of the Faculty of Engineering, Hokkaido University, 13 (Suppl2), 5-13. Retrieved from https://hdl.handle.net/2115/37925
  34. Oliveira, A. V. M., Gaspar, A. R., & Quintela, D. A. (2011). Dynamic clothing insulation. Measurements with a thermal manikin operating under the thermal comfort regulation mode. Applied Ergonomics, 42(6), 890-899. doi:10.1016/j/apergo.2011.02.005
  35. Oliveira, A. V. M., Gaspar, A. R., Francisco, S. C., & Quintela, D. A. (2012). Convective heat transfer from a nude body under calm conditions: Assessment of the effects of walking with a thermal manikin. International Journal of Biometeorology, 56(2), 319-332. doi:10.1007/s00484-011-0436-3
  36. Olessen, B. W., Sliwinska, E., Madsen, T. L., & Fanger, P. O. (1982). Effect of body posture and activity on the thermal insulation of clothing: Measurements by a movable thermal manikin. ASHRAE Transactions, 88(Pt 2), 791-805.
  37. Park, J., Hwang, S., & Lee, J.-Y. (2020). Elderly male' and female's actual wearing condition by clothing item and clothing ensemble insulation in winter. Journal of The Korean Society of Living Environmental System, 27(2), 161-173. doi:10.21086/ksles.2020.04.27.2.161
  38. Park, J.-H., & Choi, J.-W. (2008). The relationship between clothing microclimate and clothing thermal insulation. Journal of The Korean Society of Living Environmental System, 15(4), 677-685.
  39. Qian, X., & Fan, J. (2006). Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind. The Annals of Occupational Hygiene, 50(8), 833-842. doi:10.1093/annhyg/mel050
  40. Son, W. K., & Baek, Y. J. (1999). Effects of garment types on thermal insulation using a thermal manikin. Journal of the Korean Society of Clothing and Textiles, 23(8), 1110-1118.
  41. Song, M., Kwon, S., & Jung, H. (2012). A study on changes in thermal performances in ensembles made up of single garments marketed for Korean men - In still and dynamic air conditions -. Journal of the Korean Society for Clothing Industry , 14(4), 660-668. doi:10.5805/KSCI.2012.14.4.660
  42. Ueno, S. (2020). Comparison of correction factor for both dynamic total thermal insulation and evaporative resistance between ISO 7933 and ISO 9920. Journal of Physiological Anthropology, 39:23. doi:10.1186/s40101-020-00235-9
  43. Wu, T., Cui, W., Cao, B., Zhu, Y., & Ouyang, Q. (2016). Measurements of the additional thermal insulation of aircraft seat with clothing ensembles of different seasons. Building and Environment, 108, 23-29. doi:10.1016/j.buildenv.2016.08.008