DOI QR코드

DOI QR Code

Combination of berberine and silibinin improves lipid metabolism and anti-obesity efficacy in high-fat diet-fed obese mice

고지방식이로 유도한 비만마우스에서 berberine과 silibinin 복합투여를 통한 지질대사 개선과 항비만 효능 증진

  • Received : 2021.07.06
  • Accepted : 2021.08.19
  • Published : 2021.09.30

Abstract

In this study, we investigated whether the combined administration of berberine (BBR) and silibinin (SBN) was effective in improving hyperlipidemia and anti-obesity efficacy using a high-fat diet (HFD)-fed obese mouse model. HFD-induced obese mice were supplemented with the BBR and SBN combination (BBR-SBN) along with the HFD administration for 8 weeks. During the experiment, body weight, food intake, and levels of total cholesterol, triglyceride and high-density lipoprotein (HDL)-cholesterol were analyzed. Consumption of HFD in the mice caused rapid increases in body weight and the levels of total cholesterol and triglycerides compared to the normal control (NC) group. However, supplementation of BBR-SBN in these obese mice significantly reduced body weight gain and suppressed the levels of total cholesterol and triglyceride with the increment of HDL cholesterol level. In the HFD-fed group, abdominal fat weight was significantly increased and the adipocytes within the epididymal adipose tissue were found to have expanded sizes compared to the NC group. However, in the BBR-SBN group, the sizes of the adipocytes were comparable to those of the NC group and abdominal fat weight was significantly reduced. Moreover, the deposition of giant vesicular fat cells in liver tissues seen in the HFD-fed group was considerably reduced in the BBR-SBN group. These results suggest that the BBR-SBN combination tends to have synergic potential as an anti-obesity agent by significantly reducing body weight gain as well as lowering serum lipid levels and thus improving anti-obesity efficacy in HFD-induced obese mice.

본 연구에서는 고지방식이(HFD)를 급식하여 제조한 비만마우스 모델을 사용하여 berberine (BBR)과 silibinin (SBN) 복합투여가 혈중 지질대사 및 항비만 개선 효능에 유의적인 시너지 효과가 있는지 조사하였다. HFD로 유도된 비만마우스를 8 주 동안 HFD의 지속적인 제공와 함께 BBR 및 SBN (BBR-SBN) 조합을 투여하였다. 실험이 진행되는 동안 체중과 식이량을 측정하였고 혈중 총 콜레스테롤, 중성지방 및 HDL 콜레스테롤 수준을 분석하였다. HFD를 제공한 마우스는 정상 대조군(NC) 그룹에 비해 체중과 총 콜레스테롤 및 중성지방 수치가 급격히 증가했다. 그러나 이러한 비만마우스에 BBR-SBN조합을 투여하였을 때 체중 증가가 현저하게 감소하였고 HDL 콜레스테롤 수치가 증가하였으며 총 콜레스테롤 및 중성지방 수치는 유의하게 억제되었다. HFD그룹의 복부지방 무게는 유의하게 증가했으며 부고환 지방조직 내의 지방세포의 크기가 NC 그룹에 비해 크게 확장된 것으로 나타났다. 그러나 BBR-SBN 그룹에서는 지방세포의 크기가 NC 그룹의 크기와 비슷했으며 복부지방 무게가 현저하게 감소하였다. 더불어, HFD 그룹에서 보이는 간 조직의 거대 소포성 지방구의 축적은 BBR-SBN 그룹에서 크게 감소되었다. 이러한 결과는 BBR-SBN 조합이 HFD 유발 비만마우스에서 체중 및 복부 지방 증가를 현저하게 감소시키는 경향이 있으며 혈청 내의 총 콜레스테롤 및 중성지방 수준을 낮추어 항비만 효능을 개선시킬 수 있는 가능성을 보여주는 것으로 앞으로 항비만 치료 및 개선제제로서의 잠재력을 가지고 있음을 시사한다.

Keywords

Acknowledgement

본 논문은 중원대학교 교내학술연구비 지원(과제관리번호: 2020-008)에 의한 결과로 이에 감사드립니다.

References

  1. Aviva M, Jennifer S, Eugenie HC, Alison EF, Graham C, William HD (1999) The disease burden associated with overweight and obesity. J Am Med Assoc 282: 1523-1529. doi: 10.1001/jama.282.16.1523
  2. Korea Disease Control and Prevention Agency, Health and Nutrition Survey Analysis Division (2020) Announcement of the results of the 8th year 1st national health and nutrition survey: 26-27
  3. Gregory JW (2019) Prevention of obesity and metabolic syndrome in children. Front Endocrinol 10: 669. doi: 10.3389/fendo.2019.00669
  4. Krauss RM (1998) Triglycerides and atherogenic lipoproteins: rationale for lipid management. Am J Med 105: 58S-62S. doi: 10.1016/s0002-9343(98)00213-7
  5. Janes PJ, Leith CA, Pederson RA (1993) Meal-frequency effects on plasma hormone concentrations and cholesterol synthesis in human. Am J Clin Nutr 57: 868-874. doi: 10.1093/ajcn/57.6.868
  6. Anderson JW, Spencer DB, Hamilton CC, Smith SF, Tietyen J, Bryant CA, Oeltgen P (1990) Oat-bran cereal lowers serum total and LDL cholesterol in hypercholesterolemic men. Am J Clin Nutr 52: 495-499. doi: 10.1093/ajcn/52.3.495
  7. Farnier M, Davignon J (1998) Current and future treatment of hyperlipidemia: the role of statins. Am J Cardiol 82(4B): 3J-10J. doi: 10.1016/s0002-9149(98)00423-8
  8. Choi HJ, Park JN (2004) Management of risk of statin therapy. J Kor Acad Fam Med 25: 713-720
  9. Kim Y, Choi NK, Kim YJ, Park KH, Park BJ (2010) Liver injury incidence and risk after statin use. J Pharmacoepidemiol Risk Mngmt 3: 64-73
  10. Kim KH, Ahn SC, Lee MS, Kweon OS, Oh WK, Kim MS, Sohn CB, Ahn JS (2003) Adipocyte differentiation inhibitor isolated from the barks of Phellodendron amurense. Korean J Food Sci Technol 35: 503-509
  11. Lee JW, Kang YJ, Choi HK, Yoon YG (2018) Fractionated Coptis chinensis extract and its bioactive component suppress Propionibacterium acnes-stimulated inflammation in human keratinocytes. J Microbiol Biotechnol 28: 839-848. doi: 10.4014/jmb.1712.12051
  12. Kim HP, Yoon YG (2018) The protective effect of berberine on Propionibacterium acnes-induced inflammatory response in human monocytes. J Appl Biol Chem 61: 181-186. doi: 10.3839/jabc.2018.026
  13. Kong WJ, Zhang H, Song DQ, Xue R, Zhao W, Wei J, Wang YM, Shan N, Zhou ZX, Yang P, You XF, Li ZR, Si SY, Zhao LX, Pan HN, Jiang JD (2009) Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism 58: 109-119. doi: 10.1016/j.metabol.2008.08.013
  14. Li Z, Jiang JD, Kong WJ (2014) Berberine up-regulates hepatic low density lipoprotein receptor through Ras-independent but AMP activated protein kinase-dependent Raf-1 activation. Biol Pharm Bull 37:1766-1775. doi: 10.1248/bpb.b14-00412
  15. Dong B, Li H, Singh AB, Cao A, Liu J (2015) Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1a protein expression through the ubiquitin-proteasome degradation pathway. J Biol Chem 290: 4047-4058. doi: 10.1074/jbc.M114.597229
  16. Zaid A, Roubtsova A, Essalmani R, Marcinkiewicz J, Chamberland A, Hamelin J, Tremblay M, Jacques H, Jin W, Davignon J, Seidah NG, Prat A (2008) Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology. 48: 646-654. doi: 10.1002/hep.22354
  17. Wang Y, Yi X, Ghanam K, Zhang S, Zhao T, Zhu X (2014) Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism 63: 1167-1177. doi: 10.1016/j.metabol.2014.05.013
  18. Zhang J, Tang H, Deng R, Wang N, Zhang Y, Wang Y, Liu Y, Li F, Wang X, Zhou L (2015) Berberine suppresses adipocyte differentiation via decreasing CREB transcriptional activity. PLoS One 10: e0125667. doi: 10.1371/journal.pone.0125667
  19. Zhu X, Yang J, Zhu W, Yin X, Yang B, Wei Y, Guo X (2018) Combination of berberine with resveratrol improves the lipid-lowering efficacy. Int J Mol Sci 19: 3903. doi: 10.3390/ijms19123903
  20. Abenavoli L, Izzo AA, Milic N, Cicala C, Santini A, Capasso R (2018) Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res 32: 2202-2213. doi: 10.1002/ptr.6171
  21. Loguercio C, Festi D (2011) Silybin and the liver: from basic research to clinical practice. World J Gastroenterol 17: 2288-2301. doi: 10.3748/wjg.v17.i18.2288
  22. Yun DG, Lee DG (2017) Assessment of silibinin as a potential antifungal agent and investigation of its mechanism of action. IUBMB Life 69: 631-637. doi: 10.1002/iub.1647
  23. Suh HJ, Cho SY, Kim EY, Choi HS (2015) Blockade of lipid accumulation by silibinin in adipocytes and zebrafish. Chem Biol Interact 227: 53-62. doi: 10.1016/j.cbi.2014.12.027
  24. Lee SG, Kwon TK, Nam JO (2017) Silibinin inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Microbiol Biotechnol Lett 45: 27-34. doi: 10.4014/mbl.1610.10005
  25. Ramanathan R, Sivanesan K (2017) Evaluation of ameliorative ability of silibinin against zidovudine and isoniazid-induced hepatotoxicity and hyperlipidaemia in rats: Role of Silibinin in Phase I and II drug metabolism. Chem-Biol Interact 273: 142-153 https://doi.org/10.1016/j.cbi.2017.06.008
  26. Kunutsor SK, Apekey TA, Seddoh D, Walley J (2014) Liver enzymes and risk of all-cause mortality in general populations: a systematic review and meta-analysis. Int J Epidemiol 43: 187-201. doi: 10.1093/ije/dyt192
  27. Bahmani M, Shirzad H, Rafieian S, Rafieian-Kopaei M (2015) Silybum marianum: beyond hepatoprotection. J Evid Based Compl Alt Med 20: 292-301. doi: 10.1177/2156587215571116
  28. Hwang KH, Ahn JY, Kim SA, Ha TY (2009) Anti-obesity effect of berberine in mice fed a high fat diet. J Food Sci Nutr 14: 298-302. doi: 10.3746/jfn.2009.14.4.298
  29. An SJ, Jung UJ, Choi MS, Chae CK, Oh GT, Park YB (2013) Functions of monocyte chemotactic protein-3 in transgenic mice fed a high-fat, high-cholesterol diet. J Microbiol Biotechnol 23: 405-413. doi: 10.4014/jmb.1210.10057
  30. Koo HJ, Kang SC, Jang SA, Kwon JE, Sohn E, Sohn EH (2014) Effects of protocatechuic acid derived from Rubus coreanus on the lipid metabolism in high cholesterol diet-induced mice. Korean J Plant Res 27: 271-278. doi: 10.7732/kjpr.2014.27.4.271
  31. Kim JY, Shin M, Heo YR (2014) Effects of stabilized rice bran on obesity and antioxidative enzyme activity in high fat diet-induced obese C57BL/6 mice. Korean Soc Food Sci Nutr 43: 1148-1157. doi: 10.3746/jkfn.2014.43.8.1148
  32. Lee KS, Kim HP, Park HJ, Yoon YG (2021) Improvement of testosterone deficiency by fermented Momordica charantia extracts in aging male rats. Food Sci Biotechnol 30: 443-454. doi: 10.1007/s10068-020-00872-x
  33. Hong SB, Shin KA (2018) Significance of non HDL-cholesterol and triglyceride to HDL-cholesterol ratio as predictors for metabolic syndrome among korean elderly. Korean J Clin Lab Sci 50: 245-252. doi: 10.15324/kjcls.2018.50.3.245