DOI QR코드

DOI QR Code

Distribution and Natural Regeneration of Abies holophylla in Plantations in Gapyeong, Gyeonggi-do

경기도 가평 지역 조림지 내 전나무(Abies holophylla)의 분포와 천연갱신

  • Nam, Kwanghyun (Department of Agriculture, Forestry, and Bioresources, Seoul National University) ;
  • Joo, Kwang Young (National Insititute of Ecology) ;
  • Choi, Eun Ho (Department of Agriculture, Forestry, and Bioresources, Seoul National University) ;
  • Jung, Jong Bin (Department of Forest Sciences, Seoul National University) ;
  • Park, Pil Sun (Department of Agriculture, Forestry, and Bioresources, Seoul National University)
  • 남광현 (서울대학교 농림생물자원학부) ;
  • 주광영 (국립생태원) ;
  • 최은호 (서울대학교 농림생물자원학부) ;
  • 정종빈 (서울대학교 산림과학부) ;
  • 박필선 (서울대학교 농림생물자원학부)
  • Received : 2021.05.13
  • Accepted : 2021.08.26
  • Published : 2021.09.30

Abstract

A large part of Gapyeong is occupied by Korean pine (Pinus koraiensis) and Japanese larch (Larix kaempferi) plantations. Abies holophylla stands are scattered throughout Gapyeong, but little information on their distribution is available. This study explored the potential of succession from planted species to native A. holophylla in plantations. Trees were inventoried and regeneration of A. holoplhylla and stand management history were examined in Korean pine, Japanese larch, and A. holophylla-dominated stands. The importance percentage of A. holophylla was the highest among species with a range of 36.1% to 79.1% in all stands and the density of A. holophylla in understory (DBH <2 cm or <1.3 m height) ranged from 50 to 5,820 trees ha-1. Non-metric multidimensional scaling classified stands into four types, AN, AP, AM, and P. The AN type showed a reverse J-shape DBH distribution, which was similar to that in natural A. holophylla stands. Both AP and AM types included Korean pine plantations with A. holophylla seed trees within stands. For AP, A. holophylla competed with planted species in overstory and deciduous broadleaved species in understory. The AM type was once thinned from below, thus stem density in the mid DBH classes was lower than upper or lower DBH classes. The P type consisted of plantations without A. holophylla seed trees. However, understory regeneration of A. holophylla was abundant through seed supply from A. holophylla in adjacent stands. Plantations with A. holophylla seed trees within or in adjacent stands showed vigorous natural regeneration of A. holophylla, highlighting the potential for succession from planted species to native A. holophylla in the Gapyeong area. Further studies can help develop techniques to restore plantations to native species-dominated natural stands using ecological succession.

전나무속(Abies)은 내음성 수종으로 천이 후기 단계 또는 노령림의 주요 수종으로 알려져 있다. 경기도 가평 지역은 전나무(Abies holophylla Maxim.) 임분이 산재하고 있으나 구체적인 현황은 알려진 바가 드물고, 전체 산림의 상당 부분을 잣나무(Pinus koraiensis Siebold & Zucc.)와 일본잎갈나무(Larix kaempferi (Lamb.) Carriere) 조림지가 차지하고 있다. 본 연구는 가평 지역의 잣나무, 일본잎갈나무 조림지와 주변의 전나무 임분을 조사하여 조림 수종에서 지역 자생수종인 전나무로의 천이 가능성을 알아보기 위하여 수행하였다. 가평군 이화리 및 산유리의 전나무가 분포하는 잣나무, 일본잎갈나무 조림지와 주변 전나무 천연 임분에서 매목조사를 실시하고, 전나무 치수의 발생 현황을 파악하였다. 또한 해당 지역의 조림 기록을 조사하였다. 조사 지역에서 전나무의 우점치는 36.1-79.1%로 가장 높았으며, 하층의 전나무 밀도는 ha당 50-5,820본이었다. 전나무의 직경분포를 이용한 비계량 다차원척도법(NMDS) 분석 결과, 전나무 분포 특성에 따라 조사지의 임분은 4개의 유형(AN, AP, AM, P)으로 구분되었다. AN는 전나무의 직경분포가 역 J형을 보이는 전나무 천연림과 유사한 형태를 보였으며, AP는 전나무 모수가 임분 내에 존재하는 조림지로 전나무가 상층과 중층에서는 조림목과, 하층에서는 활엽수와 경쟁을 하고 있었다. AM은 전나무 모수가 임분 내 존재하나 산림작업이 이루어져 밀도가 조절된 임분이었다. P는 임분 내 전나무 모수가 없는 조림지이나 인근에 전나무 모수가 있어 하층에 전나무의 갱신이 이루어지는 유형으로 전나무림으로의 수종 전환이 예상된다. 가평 지역 내 종자 공급이 가능한 전나무 모수가 남아있거나 인접한 곳에 전나무림이 위치한 일본잎갈나무와 잣나무 조림지에서 자생수종인 전나무는 천연갱신이 활발하였고 이들 조림지는 점차 전나무림으로 발달할 가능성을 보여주었다. 본 연구의 결과는 천연림 복원이나 복층림 경영에 필요한 기초 자료로 이용될 수 있으며, 향후 전나무의 입지, 내음성과 생장 특성에 대한 정보와 이를 바탕으로 한 갱신과 관리 기술 개발이 필요하다.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) 산림과학기술 연구개발사업(FTIS 2020185D10-2122-AA02)의 지원을 받았습니다. 현장 조사를 도와주신 남기완, 김성은님과 연구지 출입을 허락해주신 산주님께 감사드립니다.

References

  1. Boldeskul, A.G., Kudryavtseva, E.P. and Arzhanova, V.S. 2015. Role of arboreous species in the functioning of landscapes of fir-broadleaved forests in the southern part of Primorskii Krai. Contemporary Problems of Ecology 8(3): 288-294. https://doi.org/10.1134/S1995425515030051
  2. Boucher, Y., Arseneault, D. and Siroi, L. 2009. Logging history of a heavily exploited southern boreal forest landscape: Insights from sunken logs and forestry maps. Forest Ecology and Management 258(7): 1359-1368. https://doi.org/10.1016/j.foreco.2009.06.037
  3. Brower, J.E. and Zar, J.J. 1977. Field and laboratory methods for general ecology. William C. Brown Company, Dubuque.
  4. Choi, B. and Lee, C. 2014. Distribution status and age structure of Abies holophylla population in Sudo-Am Temple Forest. Korean Journal of Ecology and Environment 47(3): 160-166. https://doi.org/10.11614/KSL.2014.47.3.160
  5. Chung, T.S. 1996. Stand characteristics, growth patterns, and factors affecting natural regeneration of Abies holophylla Max. in Mt. Joongwang, Kangwon-Do (MS Thesis). Seoul. Seoul National University.
  6. Diaci, J. 2002. Regeneration dynamics in a Norway spruce plantation on a silver fir-beech forest site in the Slovenian Alps. Forest Ecology and Management 161(1-3): 27-38. https://doi.org/10.1016/S0378-1127(01)00492-3
  7. Donato, D.C., Campbell, J.L. and Franklin, J.F. 2012. Multiple successional pathways and precocity in forest development: Can some forests be born complex? Journal of Vegetation Science 23(3): 576-584. https://doi.org/10.1111/j.1654-1103.2011.01362.x
  8. Franklin, J.F. and Smith, C.E. 1974. Seeding habits of upperslope tree species: III. dispersal of white and shasta red fir seeds on a clearcut. USDA Forest Service Research Note PNW 215: 9.
  9. Gapyeong-gun Office. 2013. Gapyeong-gun 2030 forest development plan. Gapyeong-gun Office, Gapyeong-gun.
  10. Godefroid, S., Massaut, W. and Koedam, N. 2005. Variation in the herb species response and the humus quality across a 200-year chronosequence of beech and oak plantations in Belgium. Ecography 28(2): 223-235. https://doi.org/10.1111/j.0906-7590.2005.03877.x
  11. Geldenhuys, C.J. 1997. Native forest regeneration in pine and eucalypt plantations in Northern Province, South Africa. Forest Ecology and Management 99(1-2): 101-115. https://doi.org/10.1016/S0378-1127(97)00197-7
  12. Gomez-Aparicio, L., Zavala, M.A., Bonet, F.J. and Zamora, R. 2009. Are pine plantations valid tools for restoring Mediterranean forests? An assessment along abiotic and biotic gradients. Ecological Applications 19(8): 2124-2141. https://doi.org/10.1890/08-1656.1
  13. Hong, K., Choi, Y.C., Kang, B. and Hong, Y. 2001. Spatial genetic structure of needle fir (Abies holophylla) seedlings on the forest gap within a needle fir forest at Mt. Odae in Korea. Journal of Korean Forest Society 90(4): 565-572.
  14. Han, B., Choi, J., Noh, T. and Kim, D. 2015. The structure of plant community in Jungdaesa-Birobong area, Odaesan National Park. Korean Journal of Environmental Ecology 29(5): 764-776. https://doi.org/10.13047/KJEE.2015.29.5.764
  15. Hayashida, M. 1989. Seed dispersal by red squirrels and subsequent establishment of Korean Pine. Forest Ecology and Management 28(2): 115-129. https://doi.org/10.1016/0378-1127(89)90064-9
  16. Howard, L.F. and Lee, T.D. 2003. Temporal patterns of vascular plant diversity in southeastern New hampshire forests. Forest Ecology and Management 185(1-2): 5-20. https://doi.org/10.1016/S0378-1127(03)00243-3
  17. Ishikawa, Y., Krestov, P.V., and Namikawa, K. 1999. Disturbance history and tree establishment in old-growth Pinus koraiensis-hardwood forests in the Russian Far East. Journal of Vegetation Science 10(4): 439-448. https://doi.org/10.2307/3237178
  18. Jang, W. and Park, P.S. 2010. Stand structure and maintenance of Picea jezoensis in a northern temperate forest, South Korea. Journal of Plant Biology 53(3): 180-189. https://doi.org/10.1007/s12374-010-9103-1
  19. Ji, D.H., Byun, J.K., Jeong, J.H., and Yi, M.J. 2011. Aboveground biomass and nutrient distribution of Korea Pine (Pinus koraiensis) advance growth in deciduous oak forest. Korean Journal of Soil Science and Fertilizer 44(6): 1144-1149. https://doi.org/10.7745/KJSSF.2011.44.6.1144
  20. Kanowski, J., Catterall, C.P. and Wardell-Johnson, G.W. 2005. Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. Forest Ecology and Management 208(1-3): 359-372. https://doi.org/10.1016/j.foreco.2005.01.018
  21. Keenan, R., Lamb, D., Woldring, O. Irvine, T. and R. Jensen. 1997. Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. Forestry Ecology and Management 99(1-2): 117-131. https://doi.org/10.1016/S0378-1127(97)00198-9
  22. Kim. D., Han. B., Kim, J. and Yeun, J. 2015. Plant community structure of Abies holophylla community from Sinseongam to Jungdaesa in Odaesan National Park. Korean Journal of Environmental Ecology 29(6): 895-906. https://doi.org/10.13047/KJEE.2015.29.6.895
  23. Kim, E.K. and Lee, H. 2019. A study on the planting records of needle fir in Gwangneung. Journal of the Korean Institute of Traditional landscape Architecture 37(2): 11-19. https://doi.org/10.14700/KITLA.2019.37.2.011
  24. Kim, K., Jun, J., Yoo, J. and Jeong, Y. 2005. Throughfall, stemflow and interception loss of the natural old-growth deciduous and planted young coniferous in Gwangneung and the rehabilitated young mixed forest in Yangju, Gyeonggido (I)-with a special reference on the results of measurement-. Journal of Korean Forest Society 94(6): 488-495.
  25. Kim, K.H. and Zsuffa, L. 1994. Reforestation of South Korea: The history and analysis of a unique case in forest tree improvement and forestry. Forestry Chronicle 70(1): 58-64. https://doi.org/10.5558/tfc70058-1
  26. Kim, S.M., An, J.H., Lim, Y.K., Pee, J.H., Kim, G.S., Lee, H.Y., Cho, Y.C., Bae, K.H., and Lee, C.S. 2013. Ecological changes of the Larix kaempferi plantations and the restoration effects confirmed from the result. The Korean Society of Limnology 46(2): 241-250. https://doi.org/10.11614/KSL.2013.46.2.241
  27. Korea Meteorological Administration. 2020. AWS. https://data.kma.go.kr/data/grnd/selectAwsRltmList.do (2020.12.21.)
  28. Korea National Arboretum. 2015. Ecology of Woody Plants in South Korea (I) Conifers. Korea National Arboretum, Pocheon.
  29. Korea Forest Service. 2020. 2020 Statistical Yearbook of Forestry. Korea Forest Service, Daejeon.
  30. Kremer, K.N. and Bauhus, J. 2020. Drivers of native species regeneration in the process of restoring natural forests from mono-specific, even-aged tree plantations: a quantitative review. Restoration Ecology 28(5): 1074-1086. https://doi.org/10.1111/rec.13247
  31. Lee, K. 1999. Growth characteristics of natural Abies holophylla stands. Monthly Forest Science Information. 98: 68-71.
  32. Lee, K., Jo, J. and Choi, Y. 1996. The Community structure in old-growth forest of the Sangwonsa-Birobong area, Odaesan National Park. Korean Journal of Environment and Ecology 9(2): 166-181.
  33. Lee, K., Kim, J., Choi, J. and Han, B. 2008. Vegetation structure of Abies holophylla forest near Woljeong Temple in Odaesan National Park. Korean Journal of Environmental Biology 22(2): 173-183.
  34. Lee, K., Kim, S., Shin, Y. and Choung, Y. 2012. Spatial pattern and association of tree species in a mixed Abies holophylla-broadleaved deciduous forest in Odaesan National Park. Journal of Plant Biology 55(3): 242-250. https://doi.org/10.1007/s12374-011-0338-2
  35. Lim, K.B. 1985. Principles of Silviculture. Hyangmoonsa, Seoul.
  36. Lugo, A.E. 1997. Maintaining an open mind on exotic species. pp. 245-247. : Principles of Conservation Biology. Sinauer Associates (Meffe, G.K. and C.R. Carroll. eds.). Inc. Pub., Sunderland, MA.
  37. Millet, J., Tran, N., Ngoc, N.V., Thi, T.T. and Prat, D. 2013. Enrichment planting of native species for biodiversity conservation in a logged tree plantation in Vietnam. New Forests 44(3): 369-383. https://doi.org/10.1007/s11056-012-9344-6
  38. Nagaike, T., Hayashi, A., Abe, M. and Arai, N. 2003. Differences in plant species diversity in Larix kaempferi plantations of different ages in central Japan. Forest Ecology and management 183(1-3): 177-193. https://doi.org/10.1016/S0378-1127(03)00105-1
  39. Nagaike, T., Hayashi, A., Okubo, M., Takahashi, K., Abe, M. and Arai, N. 2006. Changes in plant species diversity over 5 years in Larix kaempferi plantations and abandoned coppice forests in central Japan. Forest Ecology and management 236(2): 278-285. https://doi.org/10.1016/j.foreco.2006.09.012
  40. Nakagawa, M., Kurahashi, A. and Hogetsuc, T. 2003. The regeneration characteristics of Picea jezoensis and Abies sachalinensis on cut stumps in the sub-boreal forests of Hokkaido Tokyo University Forest. Forest Ecology and Management 180(1-3): 353-359. https://doi.org/10.1016/S0378-1127(02)00654-0
  41. Nam, S., Yoo, S., Park, W. and Han, S. 2000. Ecological Research of Abies holophylla Forest at Wol-jong Temple (Mt. Odae, Kangwon-do). Journal of Forest and Environmental Science 16(1): 69-81.
  42. National Institute of Agricultural Sciences. 2020. Korean Soil Information System. http://soil.rda.go.kr/soil/soilmap/characteristic.jsp (2021. 3. 25.)
  43. National Institute of Forest Science. 2016. Empirical Yield Tables. National Institute of Forest Sciences, Seoul.
  44. Oliver, C.D. and Larson, B.C. 1996. Forest Stand Dynamics Update Edition. McGraw-Hill, New York.
  45. Park, P.S. and Jeon, Y.G. 2010. Stand structure and seedling recruitment of Abies holophylla stands in Yong-In area, Gyeonggi-do. Journal of Korean Forest Society 99(1): 153-162.
  46. Parrota, J.A. 1995. Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. Journal of Vegetation Science 6(5): 627-636. https://doi.org/10.2307/3236433
  47. Quiring, D., Ostaff, D., Hartling, L., Lavinge, D., Moore, K. and DeMerchant, I. 2008. Temperature and plant hardiness zone influence distribution of balsam woolly adelgid damage in Atlantic Canada. Forestry Chronicle 84(4): 558-562. https://doi.org/10.5558/tfc84558-4
  48. Sanchez-Gomez, D., Valladares, F. and Zavala, M.A. 2006. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. Tree Physiology 26(11): 1425-1433. https://doi.org/10.1093/treephys/26.11.1425
  49. Sonali, S. 2001. Vegetation composition and structure of Tectona grandis (teak, Family Verbanaceae) plantation and dry deciduous forests in central India. Forest Ecology and management 148(1-3): 159-167. https://doi.org/10.1016/S0378-1127(00)00533-8
  50. Svejcar, T., Boyd, C., Davies, K., Hamerlynck, E. and Svejcar, L. 2017. Challenges and limitations to native species restoration in the Great Basin, USA. Plant Ecology 218(1): 81-94. https://doi.org/10.1007/s11258-016-0648-z
  51. Taylor, A.H., Jang, S.W., Zhao, L.J., Liang, C.P., Miao, C.J., and Huang, J. 2006. Regeneration patterns and tree species coexistence in old-growth Abies-Picea forests in southwestern China. Forest Ecology and Management 223(1-3): 303-317. https://doi.org/10.1016/j.foreco.2005.11.010
  52. Yoon, Y. 2009. The natural regeneration and stand characteristic of the Korean Fir stand in Nae Sorak - a study about the concept of the natural regeneration in a natural fir Forest-. Korean Journal of Environmental Biology 27(2): 176-182.
  53. Zobel, D.B. and Antos, J.A. 1991. Growth and Development of natural seedling of Abies and Tsuga in old-growth forest. Journal of Ecology 79(4): 985-998. https://doi.org/10.2307/2261093